Skip to main content

Recent Developments of Mechanical and Fatigue Analyses of Fiber-Reinforced Structures for Aerospace Applications

  • Conference paper
  • First Online:
Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 2615 Accesses

Abstract

Recent generations of passenger aircraft show an increased use of fiber-reinforced composite materials for structural components due to their outstanding weight-specific strength and stiffness and fatigue resistance. These materials allow higher load capacity, high functional integration, and weight reduction. Notwithstanding their high performance in the areas mentioned, fatigue, fracture, and impact resistance as well as out-of-plane properties require particular attention in the design process. A significant number of aerospace applications need fiber-reinforced materials in the form of thin-walled structures, allowing the use of relatively simple analysis techniques for the majority of load cases. Thick-walled structures and fatigue, impact, and out-of-plane load cases necessitate advanced models, which are still subject of intensive research. A newly developed fatigue analysis code, based on the Critical Element concept [1], uses nonlinear material laws and failure models to predict damage evolution, stress state, and failure of carbon-fiber-reinforced structural components under cyclical fatigue loading. Experimental studies were used to determine the required material laws and failure models and a finite element analysis enabled the validation of the procedure for mechanical components with complex stress states in the vicinity of a cut-out. Computational tomography and X-ray analyses accompanying cyclical tests confirmed the validity of failure and life prediction of the code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reifsnider KL, Case S (2003) Micromechanical models. In: Harris B (ed) Fatigue in composite. CRC Press, BocaRaton, Boston, New York, Washington

    Google Scholar 

  2. N. N.: VDI 2014: Development of FRP components (fibre-reinforcedplastics), part III: Analysis. Verein Deutscher Ingenieure, 2006

    Google Scholar 

  3. Degrieck J, Van Paepegem W (2001) Fatigue damage modelling of fibre-reinforced composite materials: review. App Mech Rev 54(4):279–300

    Article  Google Scholar 

  4. Wöhler A (1870) Über die Festigkeits-Versuche mit Eisen und Stahl. Zeitschrift für Bauwesen 1–3:73–106

    Google Scholar 

  5. Magin M (2012) Schadensfortschrittsentwicklung durch zyklische Belastung und deren numerische Modellierung unter Berücksichtigung nichtlinearer Werkstoffgesetze bei endloskohlenstofffaserverstärkten Polymerwerkstoffen. Technical University Kaiserslautern, PhD-Thesis

    Google Scholar 

  6. Sendeckyj G (1981) Fitting models to composite materials fatigue data. In: Chamis C (ed) ASTM STP 734—Test methods and design allowables for fibrous composites. American Society for the Testing of Materials, West Conshohocken, PA, USA, pp 245–260

    Chapter  Google Scholar 

  7. Vassilopoulos AP, Manshadi BD, Keller T (2010) Influence of the constant life diagram formulation on the fatigue life prediction of composite materials. Int J Fatigue 32:659–669

    Article  Google Scholar 

  8. Guideline for the Certification of Wind Turbines. Germanischer Lloyd, Edition 2010 (1st July 2010)

    Google Scholar 

  9. Hahn H, Kim RY (1975) Proof testing of composite materials. J Compos Mater 9:297–311

    Article  Google Scholar 

  10. Chou PC, Croman R (1978) Residual strength in fatigue based on the strength-life equal rank assumption. J Compos Mater 12:177–194

    Article  Google Scholar 

  11. Schaff JR, Davidson BD (1997) Life prediction methodology for composites structures. Part I—Constant amplitude and two-stress level fatigue. J Compos Mater 31

    Google Scholar 

  12. Fong JT (1982) Whatisfatiguedamage?, p 40–62. In: Reifsnider KL (ed) ASTM STP 775— Damage in composite materials. American Society for the Testing of Materials, West Conshohocken, PA, USA

    Google Scholar 

  13. Talreja R (1991) Statistical conderations. In: Reifsnider KL (ed) Fatigue of composite materials. Elsevier, New York, Oxford, Amsterdam, Tokyo, pp 485–501

    Google Scholar 

  14. Sendeckyj GP (1991) Life prediction for resin-matrix composite materials. In: Reifsnider KL (ed) Fatigue of composite materials. Elsevier, New York, pp 431–483

    Google Scholar 

  15. Broutman LJ, Sahu S (1972) A new theory to predict cumulative fatigue damage in fibreglass reinforced plastics. In: Corten HT (Hrsg.) ASTM STP 497—Composite materials: testing and design, p 170–188. American Society for the Testing of Materials

    Google Scholar 

  16. Lee L, Fu K, Yang J (1996) Prediction of fatigue damage and life for composite laminates under service loading spectra. Compos Sci Technol 56:635–648

    Article  Google Scholar 

  17. O’Brien TK, Reifsnider KL (1981) Fatigue damage evaluation through stiffness measurements in Boron-Epoxy laminates. J Compos Mater 15:55–69

    Article  Google Scholar 

  18. Poursartip A, Ashby MF, Beaumont PWR (1986) The fatigue damage mechanism of a carbon fibre composite laminate: I - development of the model. Compos Sci Technol 25:192–218

    Google Scholar 

  19. Hwang W, Han KS (1986) Fatigue of composites—fatigue modulus concept and life prediction. J Compos Mater 20:154–165

    Article  Google Scholar 

  20. Ogin SL, Smith PA, Beaumont PWR (1985) Matrix cracking and stiffness reduction during the fatigue of a (0/90)s GFRP laminate. Compos Sci Technol 22:23–31

    Article  Google Scholar 

  21. Palmgren A, Die Lebensdauer von Kugellagern (1928) Zeitschrift des Vereins Deutscher Ingenieure, p. 339–341

    Google Scholar 

  22. Diao X, Ye L, Mai Y (1995) A statistical model of residual strength and fatigue life of composite laminates. Compos Sci Technol 54:329–336

    Article  Google Scholar 

  23. Subramanian S, Reifsnider K, Stinchcomb W (1995) A cumulative damage model to predict the fatigue life of composite laminates including the effect of a fibre- matrix interphase. Int J Fatigue 17:343–351

    Article  Google Scholar 

  24. Halverson H, Curtin W, Reifsnider K (1997) Fatigue life of individual composite specimes based on intrinsic fatigue behaviour. Int J Fatigue 19:369–377

    Article  Google Scholar 

  25. Loverich JS (1997) Life predictionof composite armor in an unbonded flexible pipe. Virginia Polytechnic Institute and State University, Diplomarthesis

    Google Scholar 

  26. Bach C (2008) Beitrag zur Modellierung des Schwingermüdungsverhaltens und zur rechnerischen Lebensdaueranalyse von endlos kohlenstofffaserverstärkten Vinylester-Matrixsystemen. Technical University Kaiserslautern, PhD-Thesis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Magin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Magin, M. (2014). Recent Developments of Mechanical and Fatigue Analyses of Fiber-Reinforced Structures for Aerospace Applications. In: Bajpai, R., Chandrasekhar, U., Arankalle, A. (eds) Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering. Lecture Notes in Mechanical Engineering. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1871-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1871-5_8

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1870-8

  • Online ISBN: 978-81-322-1871-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics