Advertisement

Mycorrhizas in Aquatic Plants

  • Manzoor Ahmad Shah
Chapter

Abstract

In contrast to widespread occurrence of arbuscular mycorrhizas (AM) in terrestrial plants, aquatic plants are considered to be relatively less mycorrhizal. It is mainly because the benefits of mycorrhizal association to plants under aquatic conditions are expected to be relatively lesser. It is, however, hard to accept these generalised perceptions, partly because only a few studies have been hitherto carried out on mycorrhizal symbioses of aquatic plants, thereby leaving huge information gaps and paucity of quantitative data in this area of research. The cost–benefit analysis of mycorrhizal associations with aquatic plants has been relatively much less explored mainly because of more challenging methodological issues. The present chapter begins with a brief outline of aquatic habitats, followed by an overview of the studies conducted so far on mycorrhizal association of aquatic plant species with the main objective to identify key knowledge gaps in this area of research. Finally, the important questions that merit attention by future researchers to get better insights into mycorrhizal symbioses in aquatic habitats are highlighted, and a conceptual framework to address these questions is also provided (Fig. 8.1).

Keywords

Aquatic Plant Aquatic Habitat Arbuscular Mycorrhiza Mycorrhizal Colonisation Arbuscular Mycorrhiza 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allen, M. F. (1982). Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis (H.B.K.) ex Steud. New Phytologist, 91, 191–195.CrossRefGoogle Scholar
  2. Anderson, R. C., Ebbers, B. C., & Liberta, A. E. (1986). Influence of varied soil moisture conditions on VAM fungal colonization of prairie cordgrass (Spartina pectinata, Lind.). New Phytologist, 102, 523–527.CrossRefGoogle Scholar
  3. Bagyaraj, D. J., Manjunath, A., & Patil, R. B. (1979). Occurrence of vesicular-arbuscular mycorrhizas in some tropical aquatic plants. Transactions of British Mycological Society, 72, 164–167.CrossRefGoogle Scholar
  4. Beck-Nielsen, D., & Madsen, T. V. (2001). Occurrence of vesicular-arbuscular mycorrhiza in aquatic macrophytes from lakes and streams. Aquatic Botany, 71, 141–148.CrossRefGoogle Scholar
  5. Bohrer, K. E., Frieseb, C. F., & Amon, J. P. (2004). Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza, 14, 329–337.PubMedCrossRefGoogle Scholar
  6. Chaubal, R., Sharma, G. D., & Mishra, R. R. (1982). Vesicular arbuscular mycorrhiza in subtropical aquatic and marshy plant communities. Proceedings of Indian Academy of Sciences (Plant Science), 91, 69–77.Google Scholar
  7. Christensen, K. K., & Wigand, C. (1998). Formation of root plaques and their influence on tissue phosphorus content in Lobelia dortmanna. Aquatic Botany, 61, 111–122.CrossRefGoogle Scholar
  8. Clayton, J. S., & Bagyaraj, D. J. (1984). Vesicular arbuscular mycorrhizas in submerged aquatic plants of New Zealand. Aquatic Botany, 19, 251–262.CrossRefGoogle Scholar
  9. Crush, J. R., & Hay, M. J. M. (1981). A technique for growing mycorrhizal clover in solution culture. New Zealand Journal of Agricultural Research, 24, 371–372.CrossRefGoogle Scholar
  10. Dudgeon, D., et al. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Review, 81, 163–182.CrossRefGoogle Scholar
  11. Farmer, A. M. (1985). The occurrence of vesicular-arbuscular mycorrhiza in isoetid-type submerged aquatic macrophytes under naturally varying conditions. Aquatic Botany, 21, 245–249.CrossRefGoogle Scholar
  12. Gleick, P. H. (1996). Basic water requirements for human activities: Meeting the basic needs. Water International, 21, 83–92.CrossRefGoogle Scholar
  13. Hardie, K., & Leyton, L. (1981). The influence of vesicular-arbuscular mycorrhiza on growth and water relations of red clover. I. In phosphate deficient soil. New Phytologist, 89, 599–608.CrossRefGoogle Scholar
  14. Harley, J. L. (1969). The biology of mycorrhiza (328 pp). London: Leonard Hill.Google Scholar
  15. Hawksworth, D. L., & Kalin-Arroyo, M. T. (1995). Magnitude and distribution of biodiversity. In V. H. Heywood (Ed.), Global biodiversity assessment (pp. 107–191). Cambridge: Cambridge University Press.Google Scholar
  16. Hussain, R., Ayub, N., Gul, J., Chaudhry, M. A., & Khan, G. A. (1995). Incidence of vesicular arbuscular mycorrhizae in hydrophytes growing in and around Rawalpindi/Islamabad. Pakistan Journal of Phytopathology, 7(2), 98–103.Google Scholar
  17. Keeley, J. E. (1980). Endomycorrhizae influence growth of blackgum seedlings in flooded soils. American Journal of Botany, 67, 6–9.CrossRefGoogle Scholar
  18. Khan, A. G. (1974). The occurrence of mycorrhizae in halophytes, hydrophytes and xerophytes, and of Endogene spores in adjacent soil. Journal of General Microbiology, 81, 7–14.CrossRefGoogle Scholar
  19. Khan, A. G. (1993). Occurrence and importance of mycorrhizae in aquatic trees of New South Wales, Australia. Mycorrhiza, 3, 31–38.CrossRefGoogle Scholar
  20. Khan, A. G., & Belik, M. (1995). Occurrence and ecological significance of mycorrhizal symbiosis in aquatic plants. In A. Varma & B. Hock (Eds.), Mycorrhiza: Structure, function, molecular biology and biotechnology (1st ed., pp. 627–666). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  21. Manjunath, A., Mohan, R., Raj, J., & Bagyaraj, D. J. (1981). Vesicular-arbuscular mycorrhizas in cultivars of rice. Journal of Soil Biology and Ecology, 1, 1–4.Google Scholar
  22. Mejstrik, V. (1965). Study of the development of endotrophic mycorrhiza in the association of Cladietum marisci. In J. Macura & V. Vancura (Eds.), Plant microbes relationships. Prague: Czech Academy Science.Google Scholar
  23. Mejstrik, V. (1976). The ecology of mycorrhiza in plants from peat bog areas of the Trebon Basin in relation to the ground water table. Quaest Geobiology, 16, 99–174.Google Scholar
  24. Nelson, T. N., & Safir, G. R. (1982). Increased drought tolerance of mycorrhizal onion plants cased by improved phosphorus nutrition. Planta, 154, 407–413.CrossRefGoogle Scholar
  25. Radhika, K. P., & Rodrigues, B. F. (2007). Arbuscular mycorrhizae in association with aquatic and marshy plant species in Goa, India. Aquatic Botany, 86(3), 291–294.CrossRefGoogle Scholar
  26. Read, D. J., Koucheki, H. K., & Hodgson, J. (1976). Vesicular-arbuscular mycorrhiza in natural vegetation systems. 1. The occurrence of infection. New Phytologist, 77, 641–653.CrossRefGoogle Scholar
  27. Reid, I. D., & Bowen, G. D. (1979). Effects of soil moisture on VIA mycorrhiza formation and root development in Medicago. In J. L. Harley & R. S. Russell (Eds.), The soil-root interface (pp. 211–219). London: Academic.CrossRefGoogle Scholar
  28. Safir, R., Boyerj, S., & Gerdemanjn, W. (1971). Mycorrhizal enhancement of water transport in soybean. Science (Washington, D.C.) 172, 581.Google Scholar
  29. Sødergaard, M., & Laegaard, S. (1977). Vesicular-arbuscular mycorrhiza in some aquatic plants. Nature (London), 268, 232–233.CrossRefGoogle Scholar
  30. Tanner, C. C., & Clayton, J. S. (1985). Effects of vesicular-arbuscular mycorrhizas on growth and nutrition of a submerged aquatic plant. Aquatic Botany, 22, 377–386.CrossRefGoogle Scholar
  31. Wigand, C., Andersen, F. Ø., Christensen, K. K., Holmer, M., & Jensen, H. S. (1998). Endomychorrhizae of isoetids along a biogeochemical gradient. Limnology and Oceanography, 43, 508–515.CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Manzoor Ahmad Shah
    • 1
  1. 1.Department of BotanyUniversity of KashmirSrinagarIndia

Personalised recommendations