Skip to main content

Mycorrhizas in Extreme Environments

  • Chapter
  • First Online:
Mycorrhizas: Novel Dimensions in the Changing World

Abstract

Plant life in extreme environments is of special importance because it is potentially helpful in understanding of how plants can adapt to these extreme environments. Before discussing extreme environments and the plants that exist in them, it is necessary to be familiar with the types of these environments. Extreme cold environments, hydrothermal vents, sulphuric springs, extremely acidic or alkaline environments and highly saline aquatic and terrestrial systems exemplify major extreme environments on the planet Earth. There have been very few studies conducted so far in the context of mycorrhizas in extreme environments. Since the waves of global change have rendered most of the environments more and more stressful, the biotic interactions that promote stress tolerance and avoidance of plants attain renewed importance. How mycorrhizas can help host plants to withstand increasing droughts, salinity, cold and heat stresses is therefore becoming an interesting discourse. A challenging area for mycorrhizologists would be to understand what kind of morphological and physiological adaptations plant need to undertake to get maximum benefits in order to survive in extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Karaki, G. N., & Hammad, R. (2001). Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress. Journal of Plant Nutrition, 24, 1311–1323.

    Article  CAS  Google Scholar 

  • Allen, M. F., & Bosalis, M. G. (1983). Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytologist, 93, 67–76.

    Article  Google Scholar 

  • Asghari, H., Marchner, P., Smith, S., & Smith, F. (2005). Growth responses of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant and Soil, 273, 245–256.

    Article  CAS  Google Scholar 

  • Augé, R. M. (2000). Stomatal behavior of arbuscular mycorrhizal plants. In Y. Kapulnik & D. D. Douds (Eds.), Arbuscular mycorrhizas: Physiology and function (pp. 201–237). Dordrecht: Kluwer Academic Publishers. ISBN 0-7923-6444-9.

    Chapter  Google Scholar 

  • Augé, R. M. (2001). Water relations, drought and VA mycorrhizal symbiosis. Mycorrhiza, 11, 3–42.

    Article  Google Scholar 

  • Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84, 373–381.

    Article  Google Scholar 

  • Augé, R. M., Toler, H. D., Moore, J. L., Cho, K., & Saxton, A. M. (2007). Comparing contributions of soil versus root colonization to variations in stomatal behavior and soil drying in mycorrhizal Sorghum bicolor and Cucurbita pepo. Journal of Plant Physiology, 164, 1289–1299.

    Article  PubMed  Google Scholar 

  • Augé, R. M., Toler, H. D., Sams, C. E., & Nasim, G. (2008). Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza, 18, 115–121.

    Article  PubMed  Google Scholar 

  • Barea, J. M., Azcon-Aguilar, C., & Azcon, R. (1993). Mycorrhiza and crops. Advances in Plant Pathology, 9, 167–189.

    Google Scholar 

  • Berta, G., Fusconi, A., & Hooker, J. E. (2002). Arbuscular mycorrhizal modifications to plant root systems: Scale, mechanisms and consequences. In S. Gianinazzi, H. Schuepp, J. M. Barea, & K. Haselwandter (Eds.), Mycorrhizal technology in agriculture: From genes to bioproducts (pp. 71–85). Basel: Birkhäuser-Verlag.

    Chapter  Google Scholar 

  • Bethlenfalvay, G. J., & Lindcnnan, R. G. (1992). Mycorrhizae in sustainable agriculture (American Society of Agronomy Special Publication 54). Madison: American Society of Agronomy.

    Google Scholar 

  • Biró B., Posta K, Füzy A, Kádár I, Németh T. (2005): Mycorrhizal functioning as part of the survival mechanisms of barley (Hordeum vulgare L) at long-term heavy metal stress. Acta Biol. Szegediensis, 49: 65–68.

    Google Scholar 

  • Bildusan, I. J., Dixon, R. R., Pfleger, F. L., & Stewart, E. L. (1986). Growth, nutrition and gas exchange of Bromus inermis inoculated with Glomus fasciculatum. New Phytologist, 102, 303–311.

    Article  Google Scholar 

  • Bunn, R., & Zabinski, C. (2003). Arbuscular mycorrhizae in thermal-influenced soils in Yellowstone National Park, Western North America. American Naturalist, 63, 409–415.

    Google Scholar 

  • Busse, M. D., & Ellis, J. R. (1985). Vesicular-arbuscular mycorrhizal (Glomus fasciculatum) influence on soybean drought tolerance in high phosphorus soil. Canadian Journal of Botany, 63, 2290–2294.

    Article  Google Scholar 

  • Canterall, I. C., & Linderman, R. G. (2001). Preinoculation of lettuce and onion VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil, 233, 269–289.

    Article  Google Scholar 

  • Charest, C., Dalpe, Y., & Brown, A. (1993). The effect of vesicular arbuscular mycorrhizae and chilling on two hybrids of Zea mays L. Mycorrhiza, 4, 89–92.

    Article  Google Scholar 

  • Chaudhry, T. M., Hill, L., Khan, A. G., & Kuek, C. (1999). Colonization of iron and zinc-contaminated dumped ®lter-cake waste by microbes, plants and associated mycorrhizae. In M. H. Wong, J. W. C. Wong, & A. J. M. Baker (Eds.), Remediation and management of degraded land (pp. 275–283). Boca Raton: CRC Press (Chap. 27).

    Google Scholar 

  • Cho, K., Toler, H. D., Lee, J., Ownley, B. H., Jean, C., Stutz, J. C., Moore, J. L., & Augé, R. M. (2006). Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. Journal of Plant Physiology, 163, 517–528.

    Article  CAS  PubMed  Google Scholar 

  • Christie, P., & Kilpatrick, D. J. (1992). Vesicular-arbuscular mycorrhiza infection in cut grassland following long-term slurry application. Soil Biology and Biochemistry, 24, 325–330.

    Article  Google Scholar 

  • Clappert, M. J., Chistie, P., & Reid, D. M. (1990). Effects of sulfur dioxide fumigation on phleum pratense and vesicular arbuscular mycorrhizal fungi. New Phytologist, 115, 465–469.

    Article  Google Scholar 

  • Dalpé, Y., Plenchette, C., Frenot, Y., Gloaguen, J. C., & Strullu, D. G. (2002). Glomus kerguelense, a new Glomales species from sub-Antarctic. Mycotaxon, 84, 51–60.

    Google Scholar 

  • Dehne, H. W. (1982). Interaction between vesicular arbuscular fungi and plant pathogens. Phytopathology, 72, 1115–1119.

    Google Scholar 

  • Del Val, C., Barea, J. M., & Azcon-Aguilar, C. (1999). Assessing the tolerance of heavy metals of arbuscular mycorrhizal fungi isolated from sewage-sludge contaminated soils. Applied Soil Ecology, 11, 261–269.

    Article  Google Scholar 

  • Dixon, R. K., & Buschena, C. A. (1988). Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy metal in soil. Plant and Soil, 105, 265–271.

    Article  CAS  Google Scholar 

  • Dixon, R. K., Garrett, H. E., & Cox, G. S. (1988). Cytokinins in the root pressure exudate of Citrus jambhiri Lush. colonized by vesicular–arbuscular mycorrhizae. Tree Physiology, 4, 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Feng, G., Zhang, F. S., Li, X. L., Tian, C. Y., Tang, C., & Rengel, Z. (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 12, 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Frenot, Y., Chown, S. L., Whinam, J., Selkirk, P. M., Convey, P., Skotnicki, M., & Bergstrom, D. M. (2005). Biological invasions in the Antarctic: Extent, impacts and implications. Biological Reviews, 80, 45–72.

    Article  PubMed  Google Scholar 

  • Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist, 124, 25–60.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2005). Microorganisms in toxic metal polluted soils. In F. Buscot & A. Varma (Eds.), Microorganisms in soils: roles in genesis and functions (pp. 325–356). Berlin: Springer.

    Chapter  Google Scholar 

  • Gaither, L. A., & Eide, D. J. (2001). Eukaryotic zinc transporters and their regulation. Biometals, 14, 251–270.

    Article  CAS  PubMed  Google Scholar 

  • Garg, N., & Manchanda, G. (2008). Effect of arbuscular mycorrhizal inoculation on salt-induces nodule senescence in Cajanus cajan (Pigeonpea). Journal of Plant Growth Regulators, 27, 115–124.

    Article  CAS  Google Scholar 

  • Giri, B., & Mukerji, K. G. (2004). Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: Evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 14, 307–312.

    Article  PubMed  Google Scholar 

  • Giri, B., Kapoor, R., & Mukerji, K. G. (2007). Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecology, 54, 753–760.

    Article  CAS  PubMed  Google Scholar 

  • Göhre, V., & Paszkowski, U. (2006). Contribution of the arbuscular arbuscular symbiosis to heavy metal phytoremediation. Planta, 223, 1115–1122.

    Article  PubMed  Google Scholar 

  • Gonzalez-Chavez, M. C., D’Haen, J., Vangronsveld, J. J., & Dodd, J. C. (2002a). Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil, 240, 287–297.

    Article  CAS  Google Scholar 

  • Gonzalez Chavez, C., Harris, P. J., Dodd, J., & Meharg, A. A. (2002b). Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytologist, 155, 163–171.

    Article  CAS  Google Scholar 

  • Gupta, R., & Krishnamurthy, K. V. (1996). Response of mycorrhizal and nonmycorrhizal Arachis hypogaea to NaCl and acid stress. Mycorrhiza, 6, 145–149.

    Article  CAS  Google Scholar 

  • Heggo, A., Angle, J. S., & Chaney, R. L. (1990). Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biology & Biochemistry, 22, 865–869.

    Article  CAS  Google Scholar 

  • Hildebrandt, U; Regvar, M; Bothe, H. 2007. Arbuscular mycorrhiza and heavy metal tolerance. PHYTOCHEMISTRY. 68(1):139–146.

    Google Scholar 

  • Huang, R. S., Smith, W. K., & Yost, R. S. (1985). Influence of vesicular-arbuscular mycorrhiza on growth, water relations, and leaf orientation in Leucaena leucocephala Lam. De Wit. New Phytologist, 99, 229–243.

    Article  Google Scholar 

  • Jahromi, F., Aroca, R., Porcel, R., & Ruiz-Lazano, J. M. (2008). Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology, 55, 45–53.

    Article  PubMed  Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human (p. 550). Berlin/Heidelberg/New York: Springer.

    Book  Google Scholar 

  • Keller, C., McGrath, S. P., & Dunham, S. J. (2002). Trace metal leaching through a soil–grassland system after sewage sludge application. Journal of Environmental Quality, 31, 1550–1560.

    Article  CAS  PubMed  Google Scholar 

  • Khan, A. G., Kuek, C., Chaudhry, T. M., Khoo, C. S., & Hayes, W. J. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41, 97–207.

    Article  Google Scholar 

  • Laursen, G. A., Treu, R., Seppelt, R. D., & Stephenson, S. L. (1997). Mycorrhizal assessment of vascular plants from subantarctic Macquarie Island. Arctic and Alpine Research, 29, 483–491.

    Article  Google Scholar 

  • Lekberg, Y., Meadow, J., Rohr, J. R., Redecker, D., & Zabinski, C. A. (2011). Importance of dispersal and thermal environment for mycorrhizal communities: Lessons from Yellowstone National Park. Ecology, 92, 1292–1302.

    Article  PubMed  Google Scholar 

  • Leyval, C., & Joner, E. J. (2001). Bioavailability of heavy metals in the mycorrhizosphere. In R. Gobran, W. W. Wenzel, & E. Lombi (Eds.), Trace elements in the rhizosphere (pp. 165–185). Boca Raton: CRC Press.

    Google Scholar 

  • Leyval, C., Haselwandter, K., & Turnau, K. (1997). Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza, 7, 139–153.

    Article  CAS  Google Scholar 

  • Lux, H. B., & Cumming, J. R. (2001). Mycorrhizae confer aluminium resistance to tulip-poplar seedlings. Canadian Journal of Forest Research, 31, 694–702.

    Article  CAS  Google Scholar 

  • Martin, F., Kohler, A., & Duplessis, S. (2007). Living in harmony in the wood underground: Ectomycorrhizal genomics. Current Opinion in Plant Biology, 10, 204–210.

    Article  CAS  PubMed  Google Scholar 

  • Mohammed, M. J., Malkawi, H. I., & Shibli, R. (2003). Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. Journal of Plant Nutrition, 26, 125–137.

    Article  Google Scholar 

  • Mosse, B., & Hayman, D. S. (1971). Plant growth responses to vesicular-arbuscular mycorrhiza. II. In unsterilized field soils. New Phytologist, 70, 29–34.

    Article  Google Scholar 

  • Mosse, B., Stribley, D. P., & Le Tacon, F. (1981). Ecology of mycorrhizae and mycorrhizal fungi. Advances in Microbial Ecology, 2, 137–210.

    Article  Google Scholar 

  • Nelson, T. N., & Safir, G. R. (1982). Increased drought tolerance of mycorrhizal onion plants cased by improved phosphorus nutrition. Planta, 154, 407–413.

    Article  Google Scholar 

  • Neumann, E., & George, E. (2004). Colonisation with the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) enhanced phosphorus uptake from dry soil in Sorghum bicolor (L). Plant and Soil, 261, 245–255.

    Article  CAS  Google Scholar 

  • Oliveira, R. S., Dodd, J. C., & Castro, P. M. L. (2001). The mycorrhizal status of Phragmites australis in several polluted soils and sediments of an industrialised region of Northern Portugal. Mycorrhiza, 10, 241–247.

    Article  CAS  Google Scholar 

  • Ouziad F, Hildebrandt U, Schmelzer E & Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162: 634–649.

    Google Scholar 

  • Puppi, G., & Tartnlini, N. (1991). Mycorrhizal types in three Mediterranean communities affected by fire to different extent. Acta Oecologica, 12, 295–304.

    Google Scholar 

  • Rabie, G. H. (2005). Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean to irrigation with seawater. Mycorrhiza, 15, 225–230.

    Article  CAS  PubMed  Google Scholar 

  • Rabie, G. H., & Almadini, A. M. (2005). Role of bioinoculants in development of salt- tolerance of Vicia faba plants under salinity stress. African Journal of Biotechnology, 4(3), 210–222.

    CAS  Google Scholar 

  • Ruiz-Lozano, J. M. (2003). Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 13, 309–317.

    Article  PubMed  Google Scholar 

  • Ruiz-Lozano, J. M., & Azcon, R. (1995). Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiologia Plantarum, 95, 472–478.

    Article  CAS  Google Scholar 

  • Ruiz-Lozano, J. M., Azcon, R., & Gomex, M. (1996). Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum, 98, 767–772.

    Article  CAS  Google Scholar 

  • Sanchez-Diaz, M., & Honorubia, M. (1994). Water relations and alleviation of drought stress in mycorrhizal plants. In S. Gianinazzi & H. Schuepp (Eds.), Impact of arbuscular mycorrhizae on sustainable agriculture and natural ecosystems. New York: Springer.

    Google Scholar 

  • Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F., & Huang, Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18, 287–296.

    Article  CAS  PubMed  Google Scholar 

  • Smith, V. R., & Newton, I. P. (1986). Vesicular-arbuscular mycorrhizae at a sub-Antarctic island. Soil Biology & Biochemistry, 18, 547–549.

    Article  Google Scholar 

  • St-Arnaud, M., Hamel, C., Vimard, B., Caron, M., & Fortin, J. A. (1995). Altered growth of Fusarium oxysporum F. sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza, 5, 431–438.

    Google Scholar 

  • Strullu, D. G., Frenot, Y., Maurice, D., Gloaguen, J. C., & Plenchette, C. (1999). First study of mycorrhizae in the Kerguelen Islands. Comptes Rendus de l’Académie des Sciences Paris, Sciences de la Vie, 322, 771–777.

    Google Scholar 

  • Sudova, R., Pavlikova, D., Macek, T., & Vosatka, M. (2007). The effect of EDDS chelate and inoculation with the arbuscular mycorrhizal fungus Glomus intraradices on the efficacy of lead phytoextraction by two tobacco clones. Applied Soil Ecology, 35(1), 163–173.

    Article  Google Scholar 

  • Sylvia, D. M., & Williams, S. E. (1992). Vesicular arbuscular mycorrhizae and environmental stress. In G. T. Bethlenfalvay & R. D. Linderman (Eds.), Mycorrhiza in sustainable agriculture (pp. 101–124). Madison: USA, Special Publication.

    Google Scholar 

  • Toler, H. D., Morton, J. B., & Cumming, J. R. (2005). Growth and metal accumulation of mycorrhizal sorghum exposed to elevated copper and zinc. Water, Air, and Soil Pollution, 164, 155–172.

    Article  CAS  Google Scholar 

  • Tullio, M., Pierandrei, F., Salerno, A., & Rea, E. (2003). Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil. Biology and Fertility of Soils, 37, 211–214.

    CAS  Google Scholar 

  • van Hoorn, J. W., Katerji, N., Hamdy, A., & Mastrorilli, M. (2001). Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agricultural Water Management, 51, 87–98.

    Article  Google Scholar 

  • Vivas, A., Marulanda, A., Ruiz-Lozano, J. M., Barea, J. M., & Azcón, R. (2003). Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza, 13(5), 249–256.

    Article  PubMed  Google Scholar 

  • Voegelin, A., Barmettler, K., & Kretzschmar, R. (2003). Heavy metal release from contaminated soils: Comparison of column leaching and batch extraction results. Journal of Environmental Quality, 32, 865–875.

    Article  CAS  PubMed  Google Scholar 

  • Weissenhorn I, Leyval C, Berthelin J (1993) Cd-tolerant arbuscu- lar mycorrhizal (AM) fungi from heavy-metal polluted soils. Plant Soil 157:247–256.

    Google Scholar 

  • Wilkins, D. A. (1991). The influence of sheathing (ecto-)mycorrhizas of trees on the uptake and toxicity of metals. Agriculture Ecosystems and Environment, 35, 245–260.

    Article  CAS  Google Scholar 

  • Williams, P. G., Roser, D. J., & Seppelt, R. D. (1994). Mycorrhizae of hepatics in continental Antarctica. Mycological Research, 98, 34–36.

    Article  Google Scholar 

  • Yano-melo, A. M., Aggin, O. J., & Casta, M. L. (2003). Tolerance of mycorrhizal banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agriculture, Ecosystem and Environment, 95, 343–348.

    Article  Google Scholar 

  • Zandavalli, R. B., Dillenburg, L. R., & de Souza, P. V. D. (2004). Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum. Applied Soil Ecology, 25, 245–255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Shah, M.A. (2014). Mycorrhizas in Extreme Environments. In: Mycorrhizas: Novel Dimensions in the Changing World. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1865-4_7

Download citation

Publish with us

Policies and ethics