Mycorrhizas in Extreme Environments

  • Manzoor Ahmad Shah


Plant life in extreme environments is of special importance because it is potentially helpful in understanding of how plants can adapt to these extreme environments. Before discussing extreme environments and the plants that exist in them, it is necessary to be familiar with the types of these environments. Extreme cold environments, hydrothermal vents, sulphuric springs, extremely acidic or alkaline environments and highly saline aquatic and terrestrial systems exemplify major extreme environments on the planet Earth. There have been very few studies conducted so far in the context of mycorrhizas in extreme environments. Since the waves of global change have rendered most of the environments more and more stressful, the biotic interactions that promote stress tolerance and avoidance of plants attain renewed importance. How mycorrhizas can help host plants to withstand increasing droughts, salinity, cold and heat stresses is therefore becoming an interesting discourse. A challenging area for mycorrhizologists would be to understand what kind of morphological and physiological adaptations plant need to undertake to get maximum benefits in order to survive in extreme environments.


Salt Stress Arbuscular Mycorrhiza Extreme Environment Mycorrhizal Plant Hydrothermal Vent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Al-Karaki, G. N., & Hammad, R. (2001). Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress. Journal of Plant Nutrition, 24, 1311–1323.CrossRefGoogle Scholar
  2. Allen, M. F., & Bosalis, M. G. (1983). Effects of two species of VA mycorrhizal fungi on drought tolerance of winter wheat. New Phytologist, 93, 67–76.CrossRefGoogle Scholar
  3. Asghari, H., Marchner, P., Smith, S., & Smith, F. (2005). Growth responses of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant and Soil, 273, 245–256.CrossRefGoogle Scholar
  4. Augé, R. M. (2000). Stomatal behavior of arbuscular mycorrhizal plants. In Y. Kapulnik & D. D. Douds (Eds.), Arbuscular mycorrhizas: Physiology and function (pp. 201–237). Dordrecht: Kluwer Academic Publishers. ISBN 0-7923-6444-9.CrossRefGoogle Scholar
  5. Augé, R. M. (2001). Water relations, drought and VA mycorrhizal symbiosis. Mycorrhiza, 11, 3–42.CrossRefGoogle Scholar
  6. Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84, 373–381.CrossRefGoogle Scholar
  7. Augé, R. M., Toler, H. D., Moore, J. L., Cho, K., & Saxton, A. M. (2007). Comparing contributions of soil versus root colonization to variations in stomatal behavior and soil drying in mycorrhizal Sorghum bicolor and Cucurbita pepo. Journal of Plant Physiology, 164, 1289–1299.PubMedCrossRefGoogle Scholar
  8. Augé, R. M., Toler, H. D., Sams, C. E., & Nasim, G. (2008). Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza, 18, 115–121.PubMedCrossRefGoogle Scholar
  9. Barea, J. M., Azcon-Aguilar, C., & Azcon, R. (1993). Mycorrhiza and crops. Advances in Plant Pathology, 9, 167–189.Google Scholar
  10. Berta, G., Fusconi, A., & Hooker, J. E. (2002). Arbuscular mycorrhizal modifications to plant root systems: Scale, mechanisms and consequences. In S. Gianinazzi, H. Schuepp, J. M. Barea, & K. Haselwandter (Eds.), Mycorrhizal technology in agriculture: From genes to bioproducts (pp. 71–85). Basel: Birkhäuser-Verlag.CrossRefGoogle Scholar
  11. Bethlenfalvay, G. J., & Lindcnnan, R. G. (1992). Mycorrhizae in sustainable agriculture (American Society of Agronomy Special Publication 54). Madison: American Society of Agronomy.Google Scholar
  12. Biró B., Posta K, Füzy A, Kádár I, Németh T. (2005): Mycorrhizal functioning as part of the survival mechanisms of barley (Hordeum vulgare L) at long-term heavy metal stress. Acta Biol. Szegediensis, 49: 65–68.Google Scholar
  13. Bildusan, I. J., Dixon, R. R., Pfleger, F. L., & Stewart, E. L. (1986). Growth, nutrition and gas exchange of Bromus inermis inoculated with Glomus fasciculatum. New Phytologist, 102, 303–311.CrossRefGoogle Scholar
  14. Bunn, R., & Zabinski, C. (2003). Arbuscular mycorrhizae in thermal-influenced soils in Yellowstone National Park, Western North America. American Naturalist, 63, 409–415.Google Scholar
  15. Busse, M. D., & Ellis, J. R. (1985). Vesicular-arbuscular mycorrhizal (Glomus fasciculatum) influence on soybean drought tolerance in high phosphorus soil. Canadian Journal of Botany, 63, 2290–2294.CrossRefGoogle Scholar
  16. Canterall, I. C., & Linderman, R. G. (2001). Preinoculation of lettuce and onion VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant and Soil, 233, 269–289.CrossRefGoogle Scholar
  17. Charest, C., Dalpe, Y., & Brown, A. (1993). The effect of vesicular arbuscular mycorrhizae and chilling on two hybrids of Zea mays L. Mycorrhiza, 4, 89–92.CrossRefGoogle Scholar
  18. Chaudhry, T. M., Hill, L., Khan, A. G., & Kuek, C. (1999). Colonization of iron and zinc-contaminated dumped ®lter-cake waste by microbes, plants and associated mycorrhizae. In M. H. Wong, J. W. C. Wong, & A. J. M. Baker (Eds.), Remediation and management of degraded land (pp. 275–283). Boca Raton: CRC Press (Chap. 27).Google Scholar
  19. Cho, K., Toler, H. D., Lee, J., Ownley, B. H., Jean, C., Stutz, J. C., Moore, J. L., & Augé, R. M. (2006). Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. Journal of Plant Physiology, 163, 517–528.PubMedCrossRefGoogle Scholar
  20. Christie, P., & Kilpatrick, D. J. (1992). Vesicular-arbuscular mycorrhiza infection in cut grassland following long-term slurry application. Soil Biology and Biochemistry, 24, 325–330.CrossRefGoogle Scholar
  21. Clappert, M. J., Chistie, P., & Reid, D. M. (1990). Effects of sulfur dioxide fumigation on phleum pratense and vesicular arbuscular mycorrhizal fungi. New Phytologist, 115, 465–469.CrossRefGoogle Scholar
  22. Dalpé, Y., Plenchette, C., Frenot, Y., Gloaguen, J. C., & Strullu, D. G. (2002). Glomus kerguelense, a new Glomales species from sub-Antarctic. Mycotaxon, 84, 51–60.Google Scholar
  23. Dehne, H. W. (1982). Interaction between vesicular arbuscular fungi and plant pathogens. Phytopathology, 72, 1115–1119.Google Scholar
  24. Del Val, C., Barea, J. M., & Azcon-Aguilar, C. (1999). Assessing the tolerance of heavy metals of arbuscular mycorrhizal fungi isolated from sewage-sludge contaminated soils. Applied Soil Ecology, 11, 261–269.CrossRefGoogle Scholar
  25. Dixon, R. K., & Buschena, C. A. (1988). Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy metal in soil. Plant and Soil, 105, 265–271.CrossRefGoogle Scholar
  26. Dixon, R. K., Garrett, H. E., & Cox, G. S. (1988). Cytokinins in the root pressure exudate of Citrus jambhiri Lush. colonized by vesicular–arbuscular mycorrhizae. Tree Physiology, 4, 9–18.PubMedCrossRefGoogle Scholar
  27. Feng, G., Zhang, F. S., Li, X. L., Tian, C. Y., Tang, C., & Rengel, Z. (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 12, 185–190.PubMedCrossRefGoogle Scholar
  28. Frenot, Y., Chown, S. L., Whinam, J., Selkirk, P. M., Convey, P., Skotnicki, M., & Bergstrom, D. M. (2005). Biological invasions in the Antarctic: Extent, impacts and implications. Biological Reviews, 80, 45–72.PubMedCrossRefGoogle Scholar
  29. Gadd, G. M. (1993). Interactions of fungi with toxic metals. New Phytologist, 124, 25–60.CrossRefGoogle Scholar
  30. Gadd, G. M. (2005). Microorganisms in toxic metal polluted soils. In F. Buscot & A. Varma (Eds.), Microorganisms in soils: roles in genesis and functions (pp. 325–356). Berlin: Springer.CrossRefGoogle Scholar
  31. Gaither, L. A., & Eide, D. J. (2001). Eukaryotic zinc transporters and their regulation. Biometals, 14, 251–270.PubMedCrossRefGoogle Scholar
  32. Garg, N., & Manchanda, G. (2008). Effect of arbuscular mycorrhizal inoculation on salt-induces nodule senescence in Cajanus cajan (Pigeonpea). Journal of Plant Growth Regulators, 27, 115–124.CrossRefGoogle Scholar
  33. Giri, B., & Mukerji, K. G. (2004). Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: Evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 14, 307–312.PubMedCrossRefGoogle Scholar
  34. Giri, B., Kapoor, R., & Mukerji, K. G. (2007). Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecology, 54, 753–760.PubMedCrossRefGoogle Scholar
  35. Göhre, V., & Paszkowski, U. (2006). Contribution of the arbuscular arbuscular symbiosis to heavy metal phytoremediation. Planta, 223, 1115–1122.PubMedCrossRefGoogle Scholar
  36. Gonzalez-Chavez, M. C., D’Haen, J., Vangronsveld, J. J., & Dodd, J. C. (2002a). Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil, 240, 287–297.CrossRefGoogle Scholar
  37. Gonzalez Chavez, C., Harris, P. J., Dodd, J., & Meharg, A. A. (2002b). Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytologist, 155, 163–171.CrossRefGoogle Scholar
  38. Gupta, R., & Krishnamurthy, K. V. (1996). Response of mycorrhizal and nonmycorrhizal Arachis hypogaea to NaCl and acid stress. Mycorrhiza, 6, 145–149.CrossRefGoogle Scholar
  39. Heggo, A., Angle, J. S., & Chaney, R. L. (1990). Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biology & Biochemistry, 22, 865–869.CrossRefGoogle Scholar
  40. Hildebrandt, U; Regvar, M; Bothe, H. 2007. Arbuscular mycorrhiza and heavy metal tolerance. PHYTOCHEMISTRY. 68(1):139–146.Google Scholar
  41. Huang, R. S., Smith, W. K., & Yost, R. S. (1985). Influence of vesicular-arbuscular mycorrhiza on growth, water relations, and leaf orientation in Leucaena leucocephala Lam. De Wit. New Phytologist, 99, 229–243.CrossRefGoogle Scholar
  42. Jahromi, F., Aroca, R., Porcel, R., & Ruiz-Lazano, J. M. (2008). Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology, 55, 45–53.PubMedCrossRefGoogle Scholar
  43. Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human (p. 550). Berlin/Heidelberg/New York: Springer.CrossRefGoogle Scholar
  44. Keller, C., McGrath, S. P., & Dunham, S. J. (2002). Trace metal leaching through a soil–grassland system after sewage sludge application. Journal of Environmental Quality, 31, 1550–1560.PubMedCrossRefGoogle Scholar
  45. Khan, A. G., Kuek, C., Chaudhry, T. M., Khoo, C. S., & Hayes, W. J. (2000). Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 41, 97–207.CrossRefGoogle Scholar
  46. Laursen, G. A., Treu, R., Seppelt, R. D., & Stephenson, S. L. (1997). Mycorrhizal assessment of vascular plants from subantarctic Macquarie Island. Arctic and Alpine Research, 29, 483–491.CrossRefGoogle Scholar
  47. Lekberg, Y., Meadow, J., Rohr, J. R., Redecker, D., & Zabinski, C. A. (2011). Importance of dispersal and thermal environment for mycorrhizal communities: Lessons from Yellowstone National Park. Ecology, 92, 1292–1302.PubMedCrossRefGoogle Scholar
  48. Leyval, C., & Joner, E. J. (2001). Bioavailability of heavy metals in the mycorrhizosphere. In R. Gobran, W. W. Wenzel, & E. Lombi (Eds.), Trace elements in the rhizosphere (pp. 165–185). Boca Raton: CRC Press.Google Scholar
  49. Leyval, C., Haselwandter, K., & Turnau, K. (1997). Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza, 7, 139–153.CrossRefGoogle Scholar
  50. Lux, H. B., & Cumming, J. R. (2001). Mycorrhizae confer aluminium resistance to tulip-poplar seedlings. Canadian Journal of Forest Research, 31, 694–702.CrossRefGoogle Scholar
  51. Martin, F., Kohler, A., & Duplessis, S. (2007). Living in harmony in the wood underground: Ectomycorrhizal genomics. Current Opinion in Plant Biology, 10, 204–210.PubMedCrossRefGoogle Scholar
  52. Mohammed, M. J., Malkawi, H. I., & Shibli, R. (2003). Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. Journal of Plant Nutrition, 26, 125–137.CrossRefGoogle Scholar
  53. Mosse, B., & Hayman, D. S. (1971). Plant growth responses to vesicular-arbuscular mycorrhiza. II. In unsterilized field soils. New Phytologist, 70, 29–34.CrossRefGoogle Scholar
  54. Mosse, B., Stribley, D. P., & Le Tacon, F. (1981). Ecology of mycorrhizae and mycorrhizal fungi. Advances in Microbial Ecology, 2, 137–210.CrossRefGoogle Scholar
  55. Nelson, T. N., & Safir, G. R. (1982). Increased drought tolerance of mycorrhizal onion plants cased by improved phosphorus nutrition. Planta, 154, 407–413.CrossRefGoogle Scholar
  56. Neumann, E., & George, E. (2004). Colonisation with the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) enhanced phosphorus uptake from dry soil in Sorghum bicolor (L). Plant and Soil, 261, 245–255.CrossRefGoogle Scholar
  57. Oliveira, R. S., Dodd, J. C., & Castro, P. M. L. (2001). The mycorrhizal status of Phragmites australis in several polluted soils and sediments of an industrialised region of Northern Portugal. Mycorrhiza, 10, 241–247.CrossRefGoogle Scholar
  58. Ouziad F, Hildebrandt U, Schmelzer E & Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162: 634–649.Google Scholar
  59. Puppi, G., & Tartnlini, N. (1991). Mycorrhizal types in three Mediterranean communities affected by fire to different extent. Acta Oecologica, 12, 295–304.Google Scholar
  60. Rabie, G. H. (2005). Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean to irrigation with seawater. Mycorrhiza, 15, 225–230.PubMedCrossRefGoogle Scholar
  61. Rabie, G. H., & Almadini, A. M. (2005). Role of bioinoculants in development of salt- tolerance of Vicia faba plants under salinity stress. African Journal of Biotechnology, 4(3), 210–222.Google Scholar
  62. Ruiz-Lozano, J. M. (2003). Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 13, 309–317.PubMedCrossRefGoogle Scholar
  63. Ruiz-Lozano, J. M., & Azcon, R. (1995). Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiologia Plantarum, 95, 472–478.CrossRefGoogle Scholar
  64. Ruiz-Lozano, J. M., Azcon, R., & Gomex, M. (1996). Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiologia Plantarum, 98, 767–772.CrossRefGoogle Scholar
  65. Sanchez-Diaz, M., & Honorubia, M. (1994). Water relations and alleviation of drought stress in mycorrhizal plants. In S. Gianinazzi & H. Schuepp (Eds.), Impact of arbuscular mycorrhizae on sustainable agriculture and natural ecosystems. New York: Springer.Google Scholar
  66. Sheng, M., Tang, M., Chen, H., Yang, B., Zhang, F., & Huang, Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18, 287–296.PubMedCrossRefGoogle Scholar
  67. Smith, V. R., & Newton, I. P. (1986). Vesicular-arbuscular mycorrhizae at a sub-Antarctic island. Soil Biology & Biochemistry, 18, 547–549.CrossRefGoogle Scholar
  68. St-Arnaud, M., Hamel, C., Vimard, B., Caron, M., & Fortin, J. A. (1995). Altered growth of Fusarium oxysporum F. sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza, 5, 431–438.Google Scholar
  69. Strullu, D. G., Frenot, Y., Maurice, D., Gloaguen, J. C., & Plenchette, C. (1999). First study of mycorrhizae in the Kerguelen Islands. Comptes Rendus de l’Académie des Sciences Paris, Sciences de la Vie, 322, 771–777.Google Scholar
  70. Sudova, R., Pavlikova, D., Macek, T., & Vosatka, M. (2007). The effect of EDDS chelate and inoculation with the arbuscular mycorrhizal fungus Glomus intraradices on the efficacy of lead phytoextraction by two tobacco clones. Applied Soil Ecology, 35(1), 163–173.CrossRefGoogle Scholar
  71. Sylvia, D. M., & Williams, S. E. (1992). Vesicular arbuscular mycorrhizae and environmental stress. In G. T. Bethlenfalvay & R. D. Linderman (Eds.), Mycorrhiza in sustainable agriculture (pp. 101–124). Madison: USA, Special Publication.Google Scholar
  72. Toler, H. D., Morton, J. B., & Cumming, J. R. (2005). Growth and metal accumulation of mycorrhizal sorghum exposed to elevated copper and zinc. Water, Air, and Soil Pollution, 164, 155–172.CrossRefGoogle Scholar
  73. Tullio, M., Pierandrei, F., Salerno, A., & Rea, E. (2003). Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil. Biology and Fertility of Soils, 37, 211–214.Google Scholar
  74. van Hoorn, J. W., Katerji, N., Hamdy, A., & Mastrorilli, M. (2001). Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agricultural Water Management, 51, 87–98.CrossRefGoogle Scholar
  75. Vivas, A., Marulanda, A., Ruiz-Lozano, J. M., Barea, J. M., & Azcón, R. (2003). Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza, 13(5), 249–256.PubMedCrossRefGoogle Scholar
  76. Voegelin, A., Barmettler, K., & Kretzschmar, R. (2003). Heavy metal release from contaminated soils: Comparison of column leaching and batch extraction results. Journal of Environmental Quality, 32, 865–875.PubMedCrossRefGoogle Scholar
  77. Weissenhorn I, Leyval C, Berthelin J (1993) Cd-tolerant arbuscu- lar mycorrhizal (AM) fungi from heavy-metal polluted soils. Plant Soil 157:247–256.Google Scholar
  78. Wilkins, D. A. (1991). The influence of sheathing (ecto-)mycorrhizas of trees on the uptake and toxicity of metals. Agriculture Ecosystems and Environment, 35, 245–260.CrossRefGoogle Scholar
  79. Williams, P. G., Roser, D. J., & Seppelt, R. D. (1994). Mycorrhizae of hepatics in continental Antarctica. Mycological Research, 98, 34–36.CrossRefGoogle Scholar
  80. Yano-melo, A. M., Aggin, O. J., & Casta, M. L. (2003). Tolerance of mycorrhizal banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agriculture, Ecosystem and Environment, 95, 343–348.CrossRefGoogle Scholar
  81. Zandavalli, R. B., Dillenburg, L. R., & de Souza, P. V. D. (2004). Growth responses of Araucaria angustifolia (Araucariaceae) to inoculation with the mycorrhizal fungus Glomus clarum. Applied Soil Ecology, 25, 245–255.CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Manzoor Ahmad Shah
    • 1
  1. 1.Department of BotanyUniversity of KashmirSrinagarIndia

Personalised recommendations