Mycorrhizas and Ecological Restoration

  • Manzoor Ahmad Shah


Huge ecological and economic costs associated with wanton degradation of natural ecosystems underscore the urgency and importance of ecological restoration. A large number of restoration projects are undertaken for achieving various targets, but there are only very few success stories. A restoration project is doomed to fail if it does not take into account fundamental factors and processes underlying ecosystem functioning. The restoration of plant communities in degraded ecosystems requires explicit understanding of the functioning of natural communities and the driving ecological forces that produce different vegetation patterns. Understanding the fundamental question as to what makes certain species absent in most communities and occur frequently elsewhere has significant implications for restoration projects.


Arbuscular Mycorrhiza Ecological Restoration Restoration Project Secondary Succession Soil Aggregation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen, E. B., & Allen, M. F. (1988). Facilitation of succession by the nonmycotrophic coloniser Salsola kali Chenopodiaceae on a harsh site: Effects of mycorrhizal fungi. American Journal of Botany, 75, 257–266.CrossRefGoogle Scholar
  2. Allen, M. F., & McMahon, J. A. (1988). Direct VA mycorrhizal inoculation of colonising plants by pocket gophers Thomomys talpoides on Mount St. Helens. Mycologia, 80, 754–756.CrossRefGoogle Scholar
  3. Artursson, V., & Jansson, J. K. (2003). Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Applied and Environmental Microbiology, 69, 6208–6215.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Artursson, V., Finlay, R. D., & Jansson, J. K. (2005). Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environmental Microbiology, 7, 1952–1966.PubMedCrossRefGoogle Scholar
  5. Augé, R. M. (2001). Water relations, drought and VA mycorrhizal symbiosis. Mycorrhiza, 11, 3–42.CrossRefGoogle Scholar
  6. Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84, 373–381.CrossRefGoogle Scholar
  7. Bezzate, S., Aymerich, S., Chambert, R., Czarnes, S., Berge, O., & Heulin, T. (2000). Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environmental Microbiology, 2, 333–342.PubMedCrossRefGoogle Scholar
  8. Cazares, E., Trappe, J. M., & Jumpponen, A. (2005). Mycorrhiza-plant colonization patterns on a subalpine glacier forefront as a model system of primary succession. Mycorrhiza, 15, 405–416.PubMedCrossRefGoogle Scholar
  9. Clements, F. E. (1916). Plant succession: An analysis of the development of vegetation (Carnegie Institute of Washington Publication No. 242, pp. 1–512). Washington, DC: Carnegie Institution of Washington.CrossRefGoogle Scholar
  10. Eviner, V. T., & Chapin, F. S., III. (2002). The influence of plant species, fertilization and elevated CO2 on soil aggregate stability. Plant and Soil, 246, 211–219.CrossRefGoogle Scholar
  11. Filion, M., St-Arnaud, M., & Fortin, J. A. (1999). Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere micro-organisms. New Phytologist, 141, 525–533.CrossRefGoogle Scholar
  12. Francis, R., & Read, D. J. (1995). Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Canadian Journal of Botany, 73(Suppl. 1), 1301–1309.CrossRefGoogle Scholar
  13. Gorham, E., Vitousek, P. M., & Reiners, W. A. (1979). The regulation of chemical budgets over the course of terrestrial ecosystem succession. Annual Review of Ecology Systematics, 10, 53–84.CrossRefGoogle Scholar
  14. Grime, J. P. (1979). Plant strategies and vegetation processes. New York: Wiley.Google Scholar
  15. Grime, J. P., Mackey, J. M. L., Hillier, S. H., & Read, D. J. (1987). Floristic diversity in a model system using experimental microcosms. Nature, 328, 420–422.CrossRefGoogle Scholar
  16. Hildebrandt, U., Janetta, K., & Bothe, H. (2002). Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Applied and Environmental Microbiology, 68, 1919–1924.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Klironomos, J. N. (2000). Host specificity and functional diversity among arbuscular mycorrhizal fungi. In C. R Bell, M. Brylinski, & P. Johnson-Green (Eds.), Microbial biosystems: New frontiers. Proceedings of the 8th international symposium of microbial ecology (pp. 845–851). Halifax: Atlantic Canada Society for Microbial Ecology.Google Scholar
  18. Kytöviita, M. M., Vestberg, M., & Tuomi, J. (2003). A test of mutual aid in common mycorrhizal network: Established vegetation negates mycorrhizal benefit in seedlings. Ecology, 84, 898–906.CrossRefGoogle Scholar
  19. MacMahon, J. A. (1981). Successional processes: Comparisons among biomes with special reference to probable roles of and influences on animals. In D. West, H. Shugart, & D. Botkin (Eds.), Forest succession: Concept and application (pp. 277–304). New York: Springer.CrossRefGoogle Scholar
  20. Mansfeld-Giese, K., Larsen, J., & Bodker, L. (2002). Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiology Ecology, 41, 133–140.PubMedCrossRefGoogle Scholar
  21. Merryweather, J., & Fitter, A. (1995). Arbuscular mycorrhiza and phosphorus as controlling factors in the life history of Hyacinthoides non-scripta (L.) Chouard ex Rothm. New Phytologist, 129, 629–636.CrossRefGoogle Scholar
  22. Nara, K., & Hogetsu, T. (2004). Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology, 85(6), 1700–1707.CrossRefGoogle Scholar
  23. Nara, K., Nakaya, H., & Hogetsu, T. (2003a). Ectomycorrhizal sporocarp succession and production during early primary succession on Mount Fuji. New Phytologist, 158, 193–206.CrossRefGoogle Scholar
  24. Nara, K., Nakaya, H., Wu, B. Y., Zhou, Z. H., & Hogetsu, T. (2003b). Underground primary succession of ectomycorrhizal fungi in a volcanic desert on Mount Fuji. New Phytologist, 159, 743–756.CrossRefGoogle Scholar
  25. Newman, E. I. (1988). Mycorrhizal links between plants: Their functioning and ecological significance. Advances in Ecological Research, 18, 243–270.CrossRefGoogle Scholar
  26. Newsham, K. K., Fitter, A. H., & Watkinson, A. R. (1995). Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology and Evolution, 10, 407–411.PubMedCrossRefGoogle Scholar
  27. Odum, E. P. (1971). Fundamentals of ecology. Philadelphia: W.B. Saunders.Google Scholar
  28. Piotrowski, J. S., Denich, T., Klironomos, J. N., Graham, J. M., & Rillig, M. C. (2004). The effects of arbuscular mycorrhizae on soil aggregation depend on the interaction between plant and fungal species. New Phytologist, 164, 365–373.CrossRefGoogle Scholar
  29. Read, D. J. (1989). Mycorrhizas and nutrient cycling in sand dune ecosystems. Proceedings of the Royal Society of Edinburgh, 96b, 80–110.Google Scholar
  30. Read, D. J., & Birch, C. P. D. (1988). The effects and implications of disturbance of mycorrhizal mycelial systems. Proceedings of the Royal Society of Edinburg, 94B, 13–24.Google Scholar
  31. Reddell, P., & Malajczuk, N. (1984). Formation of mycorrhizae by jarrah (Eucalyptus marginata Donn ex Smith) in litter and soil. Australian Journal of Botany, 32, 511–520.CrossRefGoogle Scholar
  32. Rillig, M. C., Wright, S. F., & Eviner, V. (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant and Soil, 238, 325–333.CrossRefGoogle Scholar
  33. Rillig, M. C., Lutgen, E. R., Ramsey, P. W., Klironomos, J. N., & Gannon, J. E. (2005). Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologia, 49, 251–259.CrossRefGoogle Scholar
  34. Rillig, M. C., Mummey, D. L., Ramsey, P. W., Klironomos, J. N., & Gannon, J. E. (2006). Phylogeny of arbuscular mycorrhizal fungi predicts community composition of symbiosis-associated bacteria. FEMS Microbiology Ecology, 57(3), 389–395.PubMedCrossRefGoogle Scholar
  35. Shah, M. A., Reshi, Z., & Rashid, I. (2008a). Mycorrhizal source and neighbour identity differently influence Anthemis cotula L. invasion in the Kashmir Himalaya, India. Applied Soil Ecology, 40, 330–337.CrossRefGoogle Scholar
  36. Shah, M. A., Reshi, Z., & Rashid, I. (2008b). Mycorrhizosphere mediated Chamomile invasion in the Kashmir Himalaya, India. Plant and Soil, 312, 219–225.CrossRefGoogle Scholar
  37. Shah, M. A., Reshi, Z., & Damase, K. (2009a). Arbuscular mycorrhizal status of some Kashmir Himalayan alien invasive plants. Mycorrhiza, 20, 67–72.PubMedCrossRefGoogle Scholar
  38. Shah, M. A., Reshi, Z., & Damase, K. (2009b). Plant invasion induced shift in Glomalean spore density and diversity. Tropical Ecology, 51(2S), 317–323.Google Scholar
  39. Simard, S. W., Jones, M. D., Durall, D. M., Perry, D. A., Myrold, D. D., & Molina, R. (1997). Reciprocal transfer of carbon isotopes between extomycorrhizal Betula papyrifera and Pseudotsuga menziesii. New Phytologist, 137, 529–542.CrossRefGoogle Scholar
  40. Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79, 7–31.CrossRefGoogle Scholar
  41. Smith, S. E., & Read, D. J. (1997). Mycorrhizal symbiosis (2nd ed.). London: Academic.Google Scholar
  42. Stahl, E. (1900). Der sinn der mycorhizenbildung. Jahbuchfur Wissenschaftliche Botanik, 34, 539–668.Google Scholar
  43. van der Heijden, E. W. (2001). Differential benefits of arbuscular mycorrhizal and ectomycorrhizal infection of Salix repens. Mycorrhiza, 10(4), 185–193.CrossRefGoogle Scholar
  44. van der Heijden, M. G. A. (2004). Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecology Letters, 7, 293–303.CrossRefGoogle Scholar
  45. van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., et al. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69–72.CrossRefGoogle Scholar
  46. Walker, T. W., & Syers, J. K. (1976). The fate of phosphorus during pedogenesis. Geoderma, 15, 1–19.CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Manzoor Ahmad Shah
    • 1
  1. 1.Department of BotanyUniversity of KashmirSrinagarIndia

Personalised recommendations