Mycorrhizas in Relation to Plant Rarity and Invasiveness

  • Manzoor Ahmad Shah


The growing anthropogenic impacts on natural environments have brought many prized species to different degrees of rarity and endangerment. Whether mycorrhizal interactions, in terms of colonisation intensity and impact, contribute towards intrinsic or human-mediated rarity in plants and/or whether or not these mutualists play some role in invasiveness of plants comprises new and challenging dimensions of mycorrhizal research. In fact, understanding the factors that contribute to plant rarity and invasiveness per se is an interesting discourse.


Arbuscular Mycorrhiza Invasive Species Mycorrhizal Fungus Invasive Plant Arbuscular Mycorrhiza 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abigail, A. R. K., Hartnett, D. C., & Wilson, G. W. T. (2005). Effects of mycorrhizal symbiosis on tallgrass prairie plant–herbivore interactions. Ecology Letters, 8, 61–69.Google Scholar
  2. Ahulu, E. M., Gollotte, A., Gianinazzi- Pearson, V., & Nonaka, M. (2006). Cooccurring plants forming distinct arbuscular mycorrhizal morphologies harbor similar AM fungal species. Mycorrhiza, 17(1), 37–49.Google Scholar
  3. Akiyama, K., Matsuzaki, K., & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824–827.PubMedGoogle Scholar
  4. Allsopp, N., & Holmes, P. M. (2001). The impact of alien plant invasion on mycorrhizas in mountain fynbos vegetation. South African Journal of Botany, 67, 150–156.Google Scholar
  5. Ames, R. N., Reid, C. P. P., Porter, L. K., & Cambardella, C. (1983). Hyphal uptake and transfer of nitrogen from two 15 N labeled sources by Glomus mosseae, a vesicular arbuscular mycorrhizal fungus. New Phytologist, 95, 381–396.Google Scholar
  6. Annapurna, C., & Singh, J. S. (2003). Variation of Parthenium hysterophorus in response to soil quality: implications for invasiveness. Weed Research, 43, 190–198.Google Scholar
  7. Belnap, J., Phillips, S. L., Sherrod, S. K., & Moldenke, A. (2005). Soil biota can change after exotic plant invasion: Does this affect ecosystem processes? Ecology, 86, 3007–3017.Google Scholar
  8. Berta, G., Fusconi, A., & Trotta, A. (1993). VA mycorrhizal infection and the morphology and function of root systems. Environmental and Experimental Botany, 33, 159–173.Google Scholar
  9. Bever, J. D. (2002). Negative feedback within a mutualism: Host specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of Royal Society of London, 269, 2595–2601.Google Scholar
  10. Bever, J. D., Morton, J. B., Antonovics, J., & Schultz, P. A. (1996). Host dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. Journal of Ecology, 84, 71–82.Google Scholar
  11. Bever, J. D., Schultz, P. A., Miller, R. M., Gades, L., & Jastrow, J. D. (2003). Inoculation with prairie mycorrhizal fungi may improve restoration of native prairie plant diversity. Ecological Restoration, 21, 311–312.Google Scholar
  12. Bevill, R. L., & Louda, S. M. (1999). Comparisons of related rare and common species in the study of plant rarity. Conservation Biology, 13, 493–498.Google Scholar
  13. Blank, R. R., & Young, J. A. (2002). Influence of the exotic invasive crucifer, Lepidium latifolium, on soil properties and elemental cycling. Soil Science, 167, 821–829.Google Scholar
  14. Blossey, B., & Nötzold, R. (1995). Evolution of increased competitive ability in invasive nonindigenous plants: A hypothesis. Journal of Ecology, 83, 887–889.Google Scholar
  15. Bluementhal, D. (2005). Interrelated causes of plant invasions. Science, 310, 243–244.Google Scholar
  16. Bray, S. R., Kitajima, K., & Sylvia, D. M. (2003). Mycorrhizae differentially alter growth, physiology and competitive ability of an invasive shrub. Ecological Applications, 13, 565–574.Google Scholar
  17. Callaway, R. M., et al. (2001). Compensatory growth and competitive ability of an invasive weed are enhanced by soil fungi and native neighbors. Ecology Letters, 4, 1–5.Google Scholar
  18. Callaway, R. M., Mahall, B. E., Wicks, C., Pankey, J., & Zabinski, C. (2003). Soil fungi and the effects of an invasive forb on native versus naturalized grasses: neighbour identity matters. Ecology, 84, 129–135.Google Scholar
  19. Callaway, R. M., Thelen, G. C., Rodringuez, A., & Holben, W. E. (2004a). Soil biota and exotic plant invasion. Nature, 427, 731–733.PubMedGoogle Scholar
  20. Callaway, R. M., Thelen, G. C., Barth, S., Ramsey, P. W., & Gannon, J. E. (2004b). Soil fungi interaction between the invader Centaurea maculosa and North American natives. Ecology, 85, 1062–1071.Google Scholar
  21. Carey, E. V., Marler, M. J., & Callaway, R. M. (2004). Mycorrhizae transfer carbon from a native grass to an invasive weed: Evidence from stable isotopes and physiology. Plant Ecology, 172, 133–141.Google Scholar
  22. Chapuis-Lardy, L., Vanderhoeven, S., Dassonville, N., Koutika, L. S., & Meerts, P. (2006). Effect of exotic invasive plant Solidago gigantea on soil phosphorus status. Biology and Fertility of Soils, 42, 481–489.Google Scholar
  23. Daehler, C. C. (2003). Performance comparisons of co-occurring native and alien invasive plants: Implications for conservation and restoration. Annual Review of Ecology, Evolution and Systematics, 34, 183–211.Google Scholar
  24. Davis, M. A., & Pelsor, M. (2001). Experimental support for a resource-based mechanistic model of invasibility. Ecology Letters, 4, 421–428.Google Scholar
  25. Davis, M. A., Grime, J. P., & Thompson, K. (2000). Fluctuating resources in plant communities: A general theory of invisibility. Journal of Ecology, 88, 528–534.Google Scholar
  26. Dickson, S., Smith, F. A., & Smith, S. E. (2007). Structural differences in arbuscular mycorrhizal symbioses: More than 100 years after Gallaud, where next? Mycorrhiza, 5, 375–393.Google Scholar
  27. Duda, J. J., Freeman, C. D., Emlen, J. M., Belnap, J., Kitchen, S. J., Zak, C. J., Sobek, E., Tracy, M., & Montate, J. (2003). Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halogeton glomeratus. Biology and Fertility of Soils, 38, 72–78.Google Scholar
  28. Fogel, R., & Hunt, G. (1979). Fungal and arboreal biomass in a western Oregon Douglas fir ecosystem: Distribution pattern and turnover. Canadian Journal of Forest Research, 9, 245–256.Google Scholar
  29. Francis, R., & Read, D. J. (1984). Direct transfer of carbon between plants connected by vesicular arbuscular mycorrhizal mycelium. Nature, 307, 53–56.Google Scholar
  30. Francis, R., & Read, D. J. (1994). The contribution of mycorrhizal fungi to the determination of plant community structure. Plant & Soil, 159, 11–25.Google Scholar
  31. Fumanal, B., Plenchette, C., Chauvel, B., & Bretagnolle, F. (2006). Which role can arbuscular mycorrhizal fungi play in the facilitation of Ambrosia artemisiifolia L. invasion in France? Mycorrhiza, 17, 25–35.PubMedGoogle Scholar
  32. Funatsu, Y., Nakatsubo, T., Yamaguchi, O., & Horikoshi, T. (2005). Effects of arbuscular mycorrhizae on the establishment of the alien plant Oenothera laciniata (Onagraceae) on a Japanese coastal sand dune. Journal of Coastal Research, 21, 1054–1061.Google Scholar
  33. Gallaud, I. (1905). Etudes sur les mycorrhizes endotrophes. Revue Générale de Botanique, 17, 5–48, 66–85, 123–136, 223–239, 313–325, 423–433, 479–500.Google Scholar
  34. Gange, A. C., Bower, E., & Brown, V. K. (2002). Differential effects of insect herbivory on arbuscular mycorrhizal colonization. Oecologia, 131, 103–112.Google Scholar
  35. Gange, A. C., Brown, V. C., & Aplin, D. M. (2005). Ecological specificity or arbuscular mycorrhizae: Evidence from foliar and seed-feeding insects. Ecology, 86, 603–611.Google Scholar
  36. Gehring, C. A., & Whitham, T. G. (1994). Interactions between aboveground herbivores and the mycorrhizal mutualists of plants. Trends in Ecology & Evolution, 9, 251–255.Google Scholar
  37. Gehring, C. A., Cobb, N. S., & Whitham, T. G. (1997). Three-way interactions among ectomycorrhizal mutualists, scale insects, and resistant and susceptible pinyon pines. American Naturalist, 149, 824–841.PubMedGoogle Scholar
  38. Gillespie, I. G., & Allen, E. B. (2005). Effect of soil and mycorrhizae from native and invaded vegetation on a rare Californian forb. Applied Soil Ecology, 32, 6–12.Google Scholar
  39. Giovannetti, M., Avio, L., Fortuna, P., Pellegrino, E., Sbrana, C., & Strani, P. (2006). At the root of the wood wide web: Self recognition and nonself incompatibility in mycorrhizal networks. Plant Signalling Behaviour, 1, 1–5.Google Scholar
  40. Goodwin, J. (1992). The role of mycorrhizal fungi in competitive interactions among native bunch grasses and alien weeds: A review and synthesis. Northwest Science, 66, 251–260.Google Scholar
  41. Goverde, M., van der Heijdem, M. G. A., Wiemken, A., Sanders, I. R., & Erhardt, A. (2000). Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia, 125, 362–369.Google Scholar
  42. Govindarajalu, M., Pfeffer, P. E., Jin, H., Abubaekr, J., Douds, D. D., Allen, J. W., Buckinh, H., Lammers, P. J., & Scachar-Hill, Y. (2005). Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 435, 819–823.Google Scholar
  43. Halvorson, W. L., & Koske, R. E. (1987). Mycorrhizae associated with an invasion of Erechtites glomerata (Asteraceae) on San Miguel Island, California. Madorno, 3, 260–268.Google Scholar
  44. Harris, D., & Paul, E. A. (1987). Carbon requirements of vesicular-arbuscular mycorrhizae. In G. R. Rafir (Ed.), Ecophysiology of Mycorrhizal Plants (pp. 93–104). Boca Raton: CRC Press.Google Scholar
  45. Hartnett, D. C., Hatrick, B. A., Wilson, G. W., & Gibson, D. J. (1993). Mycorrhizal influence on intra and inter specific neighbour interactions among co-occurring prairie grasses. Journal of Ecology, 81, 787–795.Google Scholar
  46. He, X. H., Critchley, C., & Bledsoe, C. (2003). Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Critical Reviews in Plant Science, 22, 531–567.Google Scholar
  47. Hetrick, B. A. D., Wilson, G. W. T., & Owensby, C. E. (1990). Mycorrhizal influences on big bluestem rhizome regrowth and clipping tolerance. Journal of Range Management, 43, 286–290.Google Scholar
  48. Hierro, J. L., Maron, J. L., & Callaway, R. M. (2005). A biogeographical approach to plant invasions: The importance of studying exotics in their introduced and native range. Journal of Ecology, 93, 5–15.Google Scholar
  49. Hong-bang, N., Wan-xue, L., Fang-hao, & Wan Bo, L. (2007). An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: Altered soil microbial communities facilitate the invader and inhibit natives. Plant and Soil, 294, 73–85.Google Scholar
  50. Huynh, T. T., Thomson, R., McLean, C. B., & Lawrie, A. C. (2009). Functional and genetic diversity of mycorrhizal fungi from single plants of Caladenia formosa (Orchidaceae). Annals of Botany, 104, 757–765.PubMedCentralPubMedGoogle Scholar
  51. Irwin, M. J., Bougoure, J. J., & Dearnaley, J. D. W. (2007). Pterostylis nutans (Orchidaceae) has a specific association with two Ceratobasidium root-associated fungi across its range in eastern Australia. Mycoscience, 48, 231–239.Google Scholar
  52. Jacquemyn, H., Honnay, O., Cammue, B. P. A., Brys, R., & Lievens, B. (2010). Low specificity and nested subset structure characterize mycorrhizal associations in five closely related species of the genus Orchis. Molecular Ecology, 19, 4086–4095.PubMedGoogle Scholar
  53. Johansen, A., Finlay, R. D., & Olsson, P. A. (1996). Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist, 133, 705–712.Google Scholar
  54. Kabir, Z., O’Halloran, I. P., & Hamel, C. (1997). Overwinter survival of arbuscular mycorrhizal hyphae is favoured by attachment to roots but diminished by disturbance. Mycorrhiza, 7, 197–200.Google Scholar
  55. Kathrine, N. S., Kathrine, D. L., & Timothy, R. S. (2004). Competitive impacts and responses of invasive weed: Dependencies on nitrogen and phosphorus availability. Oecologia, 141, 526–5356.Google Scholar
  56. Klironomos, J. N. (2002). Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 417, 67–70.PubMedGoogle Scholar
  57. Klironomos, J. N. (2003). Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 84, 2292–2301.Google Scholar
  58. Klironomos, J. N., McCune, J., & Moutoglis, P. (2004). Species of arbuscular mycorrhizal fungi affect mycorrhizal responses to simulated herbivory. Applied Soil Ecology, 26, 133–141.Google Scholar
  59. Koide, R. T. (2000). Mycorrhizal symbiosis and plant reproduction. In Y. Kapulnik & D. D. Douds (Eds.), Arbuscular mycorrhizas: Physiology and function (pp. 19–46). Dordrecht: Kluwer Academic Publishers.Google Scholar
  60. Landis, F. C., Gargas, A., & Givnish, T. J. (2004). Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas. New Phytologist, 164, 493–504.Google Scholar
  61. Landis, F. C., Gargas, A., & Givnish, T. J. (2005). The influence of arbuscular mycorrhizae and light Wisconsin, (USA) sand savanna understories 2. Plant competition. Mycorrhiza, 15, 555–562.PubMedGoogle Scholar
  62. Lekberg, Y., Gibbons, S. M., Rosendahl, S., & Ramsey, W. P. (2013). Severe plant invasions can increase mycorrhizal fungal abundance and diversity. The ISME Journal, 2013, 1–10.Google Scholar
  63. Levine, J. M., Adler, P. B., & Yelenik, S. G. (2004). A meta-analysis of biotic resistance to exotic plant invasions. Ecology Letters, 7, 975–989.Google Scholar
  64. Liang, J., Yongjian, G., Ming, X., Jiakuan, C., & Bo, L. (2004). The history of Solidago canadensis invasion and the development of its mycorrhizal associations in newly-reclaimed land. Functional Plant Biology, 31, 979–986.Google Scholar
  65. Lodhi, M. A. K., & Killingbeck, K. T. (1980). Allelopathic inhibition of nitrification and nitrifying bacteria in a ponderosa pine (Pinus ponderosa Dougl.) community. American Journal of Botany, 67, 1423–1429.Google Scholar
  66. Lovelock, C. E., Anderson, K., & Morton, J. B. (2003). Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia, 135, 268–279.PubMedGoogle Scholar
  67. Lutgen, E., & Rillig, M. C. (2004). Influence of spotted knapweed (Centaurea maculosa) management treatment on arbuscular mycorrhizal and soil aggregation. Weed Science, 52, 172–177.Google Scholar
  68. Mack, R. N. (1996). Biotic barriers to plant naturalization. In V. C. Moran & J. H. Hoffman (Eds.), Proceedings of the 9th international symposium on biological control of weeds (pp. 39–46). Stellenbosch: University of Cape Town.Google Scholar
  69. Marler, M. J., Zabinski, C. A., & Callaway, R. M. (1999). Mycorrhizae indirectly enhance competitive effects of invasive forbs on a native bunch grass. Ecology, 80, 1180–1186.Google Scholar
  70. McCormick, M. K., Whigham, D. F., & O’Neill, J. (2004). Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytologist, 163, 425–438.Google Scholar
  71. McGonigle, T. P., & Miller, M. H. (1996). Development of fungi belowground in association with plants growing in disturbed and undisturbed soils. Soil Biology Biochemistry, 28, 263–269.Google Scholar
  72. McGonigle, T. P., & Miller, M. H. (2000). The inconsistent effect of soil disturbance on colonization of roots by arbuscular mycorrhizal fungi. Applied Soil Ecology, 14, 147–155.Google Scholar
  73. Mitchell, C. E., & Power, A. G. (2003). Release of invasive plants from fungal and viral pathogens. Nature, 421, 625–627.PubMedGoogle Scholar
  74. Mooney, H. A., & Hobbs, R. J. (Eds.). (2000). Invasive species in a changing world. Washington, DC: Island Press.Google Scholar
  75. Moora, M., & Zobel, M. (1996). Effect of arbuscular mycorrhiza on inter- and intraspecific competition of two grassland species. Oecologia, 108, 79–84.Google Scholar
  76. Moora, M., & Zobel, M. (1998). Can arbuscular mycorrhiza change the effect of root competition between conspecific plants of different ages? Canadian Journal of Botany, 76, 613–619.Google Scholar
  77. Mummey, D. L., & Rillig, M. C. (2006). The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant and Soil, 288, 81–90.Google Scholar
  78. Mummey, D. L., Rillig, M. C., & Holben, W. E. (2005). Neighbouring plant influences an arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant and Soil, 271, 83–90.Google Scholar
  79. Nijjer, S., Rogers, W. E., & Siemann, E. (2004). The effect of mycorrhizal inoculum on the growth of five native tree species and the invasive Chinese Tallow tree (Sapium sebiferum). Texas Journal of Science, 56, 357–368.Google Scholar
  80. Ogura-Tsujita, Y., & Yukawa, T. (2008). High mycorrhizal specificity in a wide- spread mycoheterotrophic plant, Eulophia zollingeri (Orchidaceae). American Journal of Botany, 95, 93–97.PubMedGoogle Scholar
  81. Parniske, M. (2005). Cue for the branching connections. Nature, 435, 750–751.PubMedGoogle Scholar
  82. Phillips, R. D., Brown, A. P., Dixon, K. W., & Hopper, S. D. (2011). Orchid biogeography and the factors associated with rarity in a biodiversity hotspot: The Southwest Australian Floristic Region. Journal of Biogeography, 38, 487–501.Google Scholar
  83. Pimentel, D., Zuniga, R., & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics, 52, 273–288.Google Scholar
  84. Pringle, A., Bever, J. D., Gardes, M., Parrent, J. L., Rillig, M. C., & Klironomos, J. N. (2009). Mycorrhizal symbioses and plant invasions. Annual Review of Ecology, Evolution, and Systematics, 40, 699–715.Google Scholar
  85. Reinhart, K. O., & Callaway, R. M. (2004). Soil biota facilitates exotic Acer invasion in Europe and North America. Ecological Applications, 14, 1737–1745.Google Scholar
  86. Reinhart, K. O., & Callaway, R. M. (2006). Soil biota and invasive plants. New Phytologist, 170, 445–457.PubMedGoogle Scholar
  87. Reinhart, K. O., Packer, A., Van der Putten, W. H., & Clay, K. (2003). Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecology Letters, 6, 1046–1050.Google Scholar
  88. Richardson, D. M., Allsopp, N., D’Antonio, C. M., Milton, S. J., & Rejmanek, M. (2000). Plant invasions – The role of mutualisms. Biological Reviews, 75, 65–93.PubMedGoogle Scholar
  89. Roberts, K. J., & Anderson, R. C. (2001). Effect of garlic mustard [Alliaria petiolata (Beib. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. American Midland Naturalist, 146, 146–152.Google Scholar
  90. Roche, S. A., Carter, R. J., Peakall, R., Smith, L. M., Whitehead, M. R., & Linde, C. C. (2010). A narrow group of monophyletic Tulasnella (Tulasnellaceae) symbiont lineages are associated with multiple species of Chiloglottis (Orchidaceae): implications for orchid diversity. American Journal of Botany, 97, 1313–1327.PubMedGoogle Scholar
  91. Sanon, A., Martin, P., Thioulouse, J., Plenchette, C., Spichiger, R., Lepage, M., & Dupponnois, R. (2006). Displacement of an herbaceous plant species community by mycorrhizal and non-mycorrhizal Gmelina arborea, an exotic tree, grown in a microcosm experiment. Mycorrhiza, 16, 125–132.PubMedGoogle Scholar
  92. Schemske, D. W., Husband, B. C., Ruckelshaus, M. H., Goodwillie, C., Parker, I. M., & Bishop, J. G. (1994). Evaluating approaches to the conservation of rare and endangered plants. Ecology, 75, 585–606.Google Scholar
  93. Scheublin, T. R., Van Logtestijn, R. S. P., & Van’der Heijden, M. G. A. (2007). Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. Journal of Ecology, 95, 631–638.Google Scholar
  94. Shah, M, A., & Reshi, Z. (2007) Invasion by alien Anthemis cotula L. in a biodiversity hotspot: Release from native foes or relief from alien friends. Current Science, 92, 1–3.Google Scholar
  95. Shah, M. A., Reshi, Z., & Rashid, I. (2008a). Mycorrhizal source and neighbour identity differently influence Anthemis cotula L. invasion in the Kashmir Himalaya, India. Applied Soil Ecology, 40, 330–337.Google Scholar
  96. Shah, M, A., Reshi, Z., & Rashid, I. (2008b) Mycorrhizosphere mediated Chamomile invasion in the Kashmir Himalaya, India. Plant and Soil, 312, 219–225Google Scholar
  97. Shah, M. A., Reshi, Z., & Damase, K. (2009a). Arbuscular mycorrhizas: Drivers or passengers of alien plant invasion. Botanical Review, 75, 397–417.Google Scholar
  98. Shah, M. A., Reshi, Z., & Damase, K. (2009b). Arbuscular mycorrhizal status of some Kashmir Himalayan alien invasive plants. Mycorrhiza, 20, 67–72.PubMedGoogle Scholar
  99. Shah, M. A., Reshi, Z., & Damase, K. (2010). Plant invasion induced shift in Glomalean spore density and diversity. Tropical Ecology, 51(2S), 317–323.Google Scholar
  100. Shefferson, R. P., Taylor, D. L., Weiss, M., Garnica, S., McCormick, M. K., Adams, S., et al. (2007). The evolutionary history of mycorrhizal specificity among lady’s slipper orchids. Evolution, 61, 1380–1390.PubMedGoogle Scholar
  101. Smith, S. E., & Read, D. J. (1997). Mycorrhizal symbiosis (2nd ed.). London: Academic.Google Scholar
  102. Stampe, E. D., & Daehler, C. C. (2003). Mycorrhizal species identity affects plant community structure and invasion: A microcosm study. Oikos, 100, 362–372.Google Scholar
  103. Stinson, K. A., Campbell, S. A., Powell, J. R., Wolfe, B. E., Callaway, R. M., Thelen, G. C., Hallett, S. G., Prati, D., & Klironomos, J. N. (2006). Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLOS Biology, 4, 1–5.Google Scholar
  104. Swarts, N. D., Sinclair, E. A., Francis, A., & Dixon, K. W. (2010). Ecological specialisation in the orchid mycorrhizal interaction leads to rarity in the endangered terrestrial orchid Caladenia huegelii. Molecular Ecology, 19, 3226–3242.PubMedGoogle Scholar
  105. Taylor, D. L., & Bruns, T. D. (1997). Independent, specialised invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids. Proceedings of the National Academy of Sciences of the United States of America, 94, 4510–4515.PubMedCentralPubMedGoogle Scholar
  106. Thibault, J. R., Fortin, J. A., & Smirnoff, W. A. (1982). In vitro allelopathic inhibition of nitrification by Balsam Poplar and Balsam Fir. American Journal of Botany, 69, 676–679.Google Scholar
  107. Trent, J. D., Wallace, L. L., Svejcar, T. J., & Christiansen, S. (1988). Effect of grazing on growth, carbohydrate pools, and mycorrhizae in winter wheat. Canadian Journal of Plant Science, 68, 115–120.Google Scholar
  108. van der Heijden, M. G. A. (2004). Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecology Letters, 7, 293–303.Google Scholar
  109. van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., et al. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69–72.Google Scholar
  110. van der Stoel, Van der Putten, W. H., & Duyts, H. (2002) Development of a negative plant-soil feedback in the expansion zone of the clonal grass Ammophila arenaria following root formation and nematode colonization. Journal of Ecology, 90, 978–988.Google Scholar
  111. Vance, C. P., Uhde-Stone, C., & Allan, D. L. (2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423–447.Google Scholar
  112. Vogelsang, K. M., & Bever, J. D. (2009). Mycorrhizal densities decline in association with non-native plants and contribute to plant invasion. Ecology, 90, 399–407.PubMedGoogle Scholar
  113. Vogelsang, K. M., Bever, J. D., Griswold, M., & Schultz, P. A. (2004). The use of mycorrhizal fungi in erosion control applications. Sacramento: California Department of Transportation.Google Scholar
  114. Walling, S. Z., & Zabinski, C. A. (2006). Defoliation effects on arbuscular mycorrhizae and plant growth of two native bunch grasses and an invasive forb. Applied Soil Ecology, 32, 111–117.Google Scholar
  115. Wang, B., & Qui, Y. L. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, 16, 299–363.PubMedGoogle Scholar
  116. Weir, T. L. (2007). The role of allelopathy and mycorrhizal associations in biological invasions. Allelopathy Journal, 20, 43–50.Google Scholar
  117. White, E. M., Wilson, J. C., & Clarke, A. R. (2006). Biotic indirect effects: A neglected concept in invasion biology. Diversity and Distributions, 12, 443–455.Google Scholar
  118. Wolf, L. M., Elzinga, J. A., & Biere, A. (2004). Increased susceptibility to enemies following introduction in the invasive plant. Silene latifolia. Ecology Letters, 7, 813–820.Google Scholar
  119. Wolfe, B. E., & Klironomos, J. N. (2005). Breaking new ground: Soil communities and exotic plant invasion. Bioscience, 55, 477–487.Google Scholar
  120. Yamoto, M. (2004). Morphological types of arbuscular mycorrhizal fungi in roots of weeds on vacant land. Mycorrhiza, 14, 127–131.Google Scholar
  121. Yoshida, L. C., & Allen, E. B. (2001). Response to ammonium and nitrate by a mycorrhizal annual grassland native shrub in Southern California. American Journal of Botany, 88, 1430–1436.PubMedGoogle Scholar
  122. Zabinski, C. A., Quinn, L., & Callaway, R. M. (2002). Phosphorus uptake, not carbon transfer, explains arbuscular mycorrhizal enhancement of Centaurea maculosa in the presence of native grassland species. Functional Ecology, 16, 758–765.Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Manzoor Ahmad Shah
    • 1
  1. 1.Department of BotanyUniversity of KashmirSrinagarIndia

Personalised recommendations