Mycorrhizas: An Overview

  • Manzoor Ahmad Shah


Mycorrhizas (Greek – ‘fungus + ;root’) represent by and large mutualistic associations between plant roots and nonpathogenic, obligate symbiotic fungi that colonise the cortical tissue of roots during periods of active plant growth. The mutualistic relationship is usually characterised by the movement of nutrients – carbon flows to the fungus and inorganic nutrients move to the plant – thereby providing a critical linkage between the plant root and soil system. About 90 % of terrestrial plants, including angiosperms, gymnosperms and pteridophytes, are mycorrhizal (Read et al. 2000). Only few higher plants do not form mycorrhizal associations, including some aquatic vascular plants and members of the conventional non-host families, such as Brassicaceae, Chenopodiaceae, Cyperaceae and Juncaceae.


Arbuscular Mycorrhizal Arbuscular Mycorrhiza Aquatic Vascular Plant Intercellular Hypha Root Cortical Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahulu, E. M., Nakata, M., & Nonaka, M. (2005). Arum and Paris-type of arbuscular mycorrhiza in a mixed pine forest on sand dune soil in Niigata Prefecture, central Honshu, Japan. Mycorrhiza, 15, 129–136.CrossRefGoogle Scholar
  2. Akiyama, K., Matsuzaki, K., & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824–827.PubMedCrossRefGoogle Scholar
  3. Aldwell, F. E. B., & Hall, I. R. (1987). A review of serological techniques for the identification of mycorrhizal fungi. In D. M. Sylvia, L. L. Hung, & J. H. Graham (Eds.), Mycorrhizae in the next decade. Practical applications and research priorities (pp. 305–307). Proceedings of the 7th North American conference on Mycorrhizae, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL.Google Scholar
  4. Bentivenga, S. P., & Morton, J. B. (1994). Stability and heritability of fatty acid methyl ester profiles of glomalean endomycorrhizal fungi. Mycological Research, 98, 1419–1426.CrossRefGoogle Scholar
  5. Besserer, A., Puech-Page’s, V., & Kiefer, P. et al. (2006). Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLOS Biology 4, e226. doi: 10.1371/journal.pbio.0040226
  6. Bonfante, P. (1991). Biologia delle micorrize nel Centro di Studio sulla Micologia: il passata, il presente e il futuro. In Estratto da Funghi, Piante e Suolo. Quarat’anni di ricerche del Centro diBrundrett and Kendrick 1990; Studio sulla Micologia del Terreno nel centenario della nascita del suo fondatore Beniamino Peyronel (pp. 135–156). Torino: Centro di Studio sulla Micologia del Terreno, CNR.Google Scholar
  7. Brundrett, M. C., & Kendrick, B. (1990). The roots and mycorrhizas of herbaceous woodland plants I. Quantitative aspects of morphology. New Phytologist, 14, 457–468.CrossRefGoogle Scholar
  8. Cavagnaro, T. R., Smith, F. A., Lorimer, M. F., Haskard, K. A., Ayling, S. M., & Smith, S. E. (2001). Quantitative development of Paris- type arbuscular mycorrhizas formed between Asphodelus fistulosus and Glomus coronatum. New Phytologist, 149, 105–113.CrossRefGoogle Scholar
  9. Cummings, B. A. (1990). Use of RFLPs as a means of examining genetic relatedness in VAM fungi. In M. F. Allen & S. E. Williams (Eds.), Abstracts, 8th North American conference on Mycorrhizae (p. 63). Laramie: University of Wyoming Agricultural Experiment Station.Google Scholar
  10. Dangeard, P. A. (1896). Une maladie du peuplier dans l’ouest de la France. Botaniste, 58, 38–43.Google Scholar
  11. Davidson, K., & Geringer, J. E. (1990). Genetic studies of vesicular-arbuscular mycorrhizal fungi. In M. F. Allen & S. E. Williams (Eds.), Abstracts, 8th North American conference on Mycorrhizae (p. 70). Laramie: University of Wyoming Agricultural Experiment Station.Google Scholar
  12. Dickson, S. (2004). The Arum-Paris continuum of mycorrhizal symbioses. New Phytologist, 163, 187–200.CrossRefGoogle Scholar
  13. Dickson, S., Smith, F. A., & Smith, S. E. (2007). Structural differences in arbuscular mycorrhizal symbioses: More than 100 years after Gallaud, where next? Mycorrhiza, 5, 375–393.CrossRefGoogle Scholar
  14. Frank, A. B. (1885). Ueber die auf Wurzelsymbiose beruhende Er- nhrung gewisser Bame durch unterirdische Pilze. Berichte der Deutschen Botanischen Gesellschaft, 3, 128–145.Google Scholar
  15. Gallaud, I. (1905). Etudes sur les mycorrhizes endotrophes. Revue General de Botanique 17, 5–48, 66–85, 123–136, 223–239, 313–325, 423–433, 479–500.Google Scholar
  16. Gehrig, H., Schußler, A., & Kluge, M. (1996). Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the Glomales: Evidence by SSU rRNA analysis. Journal of Molecular Evolution, 43, 71–81.PubMedCrossRefGoogle Scholar
  17. Gerdemann, J. W., & Trappe, J. M. (1974). The Endogonaceae in the Pacific Northwest. New York: The New York Botanical Garden.Google Scholar
  18. Gianinazzi-Pearson, V., Gollotte, A., Dumas-Gaudot, E., Franken, P., & Gianinazzi, S. (1994a). Gene expression and molecular modifications associated with plant responses to infection by arbuscular mycorrhizal fungi. In M. J. Daniels, J. A. Downie, & A. E. Osbourn (Eds.), Advances in molecular genetics of plant-microbe interactions (Vol. 3, pp. 179–186). Boston/London: Kluwer Academic Publishers.CrossRefGoogle Scholar
  19. Gianinazzi-Pearson, V., Lemoine, M. C., Arnould, C., Gollotte, A., & Morton, J. B. (1994b). Localization of ß(1-3) glucans in spore and hyphal walls of fungi in the Glomales. Mycologia, 86, 478–485.CrossRefGoogle Scholar
  20. Heckman, D. S., Geiser, D. M., Eidell, B. R., et al. (2001). Molecular evidence for the early colonization of land by fungi and plants. Science, 293, 1129–1133.PubMedCrossRefGoogle Scholar
  21. Hepper, C. M. (1987). Gel electrophoresis for identification of VAM fungi. In D. M. Sylvia, L. L. Hung, & J. H. Graham (Eds.), Mycorrhizae in the next decade. Practical applications and research priorities (pp. 308–310). Proceedings of the 7th North American conference on Mycorrhizae. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL.Google Scholar
  22. Hildebrandt, U., Ouziad, F., Marner, F.-J., & Bothe, H. (2006). The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiology Letters, 254, 258–267.PubMedCrossRefGoogle Scholar
  23. Jakobsen, I., & Rosendahl, L. (1990). Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist, 115, 77–83.CrossRefGoogle Scholar
  24. Janse, J. M. (1897). Les Endophytes radi- caux de quelques plantes Javanaises. Annals du Jardin Botanique Buitenzorg, 14, 53–201.Google Scholar
  25. Jones, F. R. (1924). A mycorrhizal fungus in the roots of legumes and other plants. Journal of Agricultural Research, 29, 459–470.Google Scholar
  26. Koide, R. T., & Mosse, B. (2004). A history of research on arbuscular mycorrhiza. Mycorrhiza, 14, 145–163.PubMedCrossRefGoogle Scholar
  27. Lemoine, M. C., Gollotte, A., & Gianioazzi-Pearson, V. (1995). Localization of β(l-3) glucan in walls of the endomycorrhizal fungi Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe and Acaulospora laevis Gerd. & Trappe during colonization of host roots. New Phytologist, 129, 97–105.CrossRefGoogle Scholar
  28. Lohman, M. L. (1927). Occurrence of mycorrhiza in Iowa forest plants. University of Iowa Studies in Natural History, 11, 33–58.Google Scholar
  29. Morton, J. B. (1990a). Evolutionary relationships among arbuscular mycorrhizal fungi in the Endogonaceae. Mycologia, 82, 192–207.CrossRefGoogle Scholar
  30. Morton, J. B. (1990b). Species and clones of arbuscular mycorrhizal fungi (Glomales, Zygomycetes): Their role in macro- and microevolutionary processes. Mycotaxon, 37, 493–515.Google Scholar
  31. Mosse, B. (1953). Fructifications associated with mycorrhizal strawberry roots. Nature, 171, 9.CrossRefGoogle Scholar
  32. Nageli, C. (1842). Pilze im Innern von Zellen. Linnaea, 16, 278–285.Google Scholar
  33. Petri, L. (1903). Ricerche sul signifacto morfologica del prosporoidi (sporangioli di Janse) nelle micorrize endotrofiche. Nuovo Giornale Botanico Italiano, 10, 541.Google Scholar
  34. Peyronel, B. (1923). Fructification de l’endophyte arbuscules etvesicules des mycorhizes endotrophes. Bulletin of Society of Mycology of France, 39, 119–126.Google Scholar
  35. Peyronel, B. (1924). Specie di “Endogone” produttrici di micorize endotrofiche. Bollettino della Stazione di Patologia Vegetale di Roma, 5, 73–75.Google Scholar
  36. Pirozynski, K. A., & Malloch, D. W. (1975). The origin of land plants: A matter of mycotrophism. Biosystems, 6, 153–164.PubMedCrossRefGoogle Scholar
  37. Rayner, M. C. (1926–1927). Mycorrhiza. New Phytologist, 25, 1–50, 65–108, 171–190, 248–263, 338–372, 26, 22–45, 85–114.Google Scholar
  38. Read, D. J., Duckett, J. G., Francis, R., Ligrone, R., & Russell, A. (2000). Symbiotic fungal associations in ‘lower’ land plants. Philosophical Transactions of Royal Society of London B, 355, 815–831.CrossRefGoogle Scholar
  39. Redecker, D. (2000). Specific PCR primers to identify arbuscular mycorrhiza fungi within colonized roots. Mycorrhiza, 10, 73–80.CrossRefGoogle Scholar
  40. Redecker, D. (2002). Molecular identification and phylogeny of arbuscular mycorrhizal fungi. Plant and Soil, 244, 67–73.CrossRefGoogle Scholar
  41. Redecker, D., Morton, J. B., & Bruns, T. D. (2000). Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Molecular Phylogenetics and Evolution, 14, 276–284.PubMedCrossRefGoogle Scholar
  42. Redecker, D., Hijri, I., & Wiemken, A. (2003). Molecular identification of arbuscular mycorrhizal fungi in roots: Perspectives and problems. Folia Geobotanica, 38, 113–124.CrossRefGoogle Scholar
  43. Scannerini, S., & Bellando, M. (1968). Sull’ultrastruttura delle micorrize endotrofiche di Ornithogalum umbellatum L. in attivita vegetativa. Atti Accademia della Scienze di Torino, 102, 795–809.Google Scholar
  44. Schlicht, A. (1889). Beitrag zur Kenntniss der Verbreitung und Bedeutung der Mycorhizen. Landwirtschaftliche Jahrbcher, 18, 478–506.Google Scholar
  45. Schußler, A., Schwarzott, D., & Walker, C. (2001). A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycological Research, 105, 1413–142.CrossRefGoogle Scholar
  46. Shachar-Hill, Y., Pfeffer, P. E., Douds, D., Osman, S. F., Doner, L. W., & Ratcliffe, R. G. (1995). Partitioning of intermediate carbon metabolism in VAM colonized leek. Plant Physiology, 108, 7–15.PubMedCentralPubMedGoogle Scholar
  47. Simon, L. (1996). Phylogeny of the Glomales: Deciphering the past to understand the present. New Phytologist, 133, 95–101.CrossRefGoogle Scholar
  48. Simon, L., Lalonde, M., & Bruns, T. D. (1992). Specific amplification of 18s fungal ribosomal genes from vesicular arbuscular endomycorrhizal fungi colonizing roots. Applied and Environmental Microbiology, 58, 291–295.PubMedCentralPubMedGoogle Scholar
  49. Simon, L., Bousquet, J., Levesque, R. C., & Lalonde, M. (1993). Origin and diversification of endomycorrhizal fungi and coincidence with vascular plants. Nature, 363, 67–69.CrossRefGoogle Scholar
  50. Smith, F. A., & Smith, S. E. (1997). Structural diversity in vesicular-arbuscular mycorrhizal symbioses. New Phytologist, 137, 373–388.CrossRefGoogle Scholar
  51. Trappe, J. M., & Berch, S. M. (1985). The prehistory of mycorrhizae: A.B. Frank’s predecessors. In Proceedings of the 6th North American conference on Mycorrhizae (pp. 2–11). Corvallis: Forest Research Laboratory, Oregon State University.Google Scholar
  52. Yamoto, M. (2004). Morphological types of arbuscular mycorrhizal fungi in roots of weeds on vacant land. Mycorrhiza, 14, 127–131.CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Manzoor Ahmad Shah
    • 1
  1. 1.Department of BotanyUniversity of KashmirSrinagarIndia

Personalised recommendations