Advertisement

Solanaceous Vegetable Crops

  • P. Parvatha Reddy
Chapter

Abstract

Economic importance and losses, symptoms/damage, pre-disposing factors, epidemiology, survival and spread, and biointensive integrated management of insect and mite pests, fungal, bacterial, viral/mycoplasma diseases, nematode pests, and disease complexes of Solanaceous vegetable crops (potato, tomato, brinjal, chilli and bell pepper) using physical methods, cultural methods, botanical pesticides, chemical pesticides, bioagents, arbuscular mycorrhizal fungi, and host resistance are discussed.

Keywords

Root Colonization Fruit Yield Nematode Population Soil Solarization Gall Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abu-Elamayem, M. M., Shehata, M. R. A., Tantaway, G. A., Ibrahim, I. K., & Schuman, M. A. (1978). Effect of CGA 12223 and benomyl against Meloidogyne javanica and Rhizoctonia solani. Phytopathologische Zeitschrift, 92, 289–293.CrossRefGoogle Scholar
  2. Amenduni, M., D’Amico, M., Colella, C., & Cirulli, M. (2004). Effect of Brassicaceae green manures and soil-solarization on corky root of tomato. First International Biofumigation Symposium, Florence, Italy.Google Scholar
  3. Anitha, B., & Subramanian, S. (1998). Management of the reniform nematode Rotylen-chulus reniformis in tomato. In U. K. Mehta (Ed.), Nematology—challenges & opportunities in 21st century (pp. 249–250). Coimbatore: Sugarcane Breeding Institute.Google Scholar
  4. Anon. (1993). Biennial Report (1991–1993) of AICRP on Plant Parasitic Nematodes with Integrated Approach for their Control, Dept. of Nematology, Haryana Agriculture University, Hisar, 80 pp.Google Scholar
  5. Baskaran, P., & Kumar, A. (1980). Further studies on Dipel-insecticide combinations against the insect pests of brinjal. Pesticides, 14, 9–11.Google Scholar
  6. Bello, A. (1998). Biofumigation and integrated crop management. In A. Bello, J. A. Gonzalez, M. Arias, & R. Rodriguez-Kabana (Eds.), Alternatives to methyl bromide for the southern European countries (pp. 99–126). Valencia: Phytoma-Espania, DG XI EU, CSIC.Google Scholar
  7. Bello, A., Escuer, M., Sanz, R., López-Pérez, J. A., & Guirao, P. (1997). Biofumigación, nematodos y bromuro de metilo en el cultivo de pimiento. In A. López & J. A. Mora (Eds.), Posibilidad de Alternativas Viables al Bromuro de Metilo en Pimiento de Invernadero (pp. 67–108). Spain: Consejería de Medio Ambiente, Agricultura y Agua de Murcia.Google Scholar
  8. Bello, A., López-Pérez, J. A., Garcia-Alvarez, A., Sanz, R., & Lacasa, A. (2004). Biofumigation and nematode control in the Mediterranean region. In R. C. Cook & D. J. Hunt (Eds.), Proceedings of the Fourth International Congress of Nematology (Vol. 2, pp. 133–149). Nematology Monographs and Perspectives, Brill, Leiden and Boston.Google Scholar
  9. Besri, M., & Drame, A. (1982). Control of Fusarium oxysporum f. sp. lycopersici and Verticillium dahliae by soil solarization. Proceedings of the First Meeting of the Arab Society for Plant Protection, Amman, p. 113.Google Scholar
  10. Bhagawati, B., Goswami, B. K., & Singh, C. S. (2000). Management of disease complex of tomato caused by M. incognita and Fusarium oxysporum f. sp. lycopersici through bioagents. Indian Journal of Nematology, 30, 16–22.Google Scholar
  11. Bhatti, D. S., & Jain, R. K. (1977). Estimation of loss in okra, tomato and brinjal yield due to Meloidogyne incognita. Indian Journal of Nematology, 7, 37–41.Google Scholar
  12. Borah, A., & Phukan, P. N. (2000). Effect of VAM fungus, Glomus fasciculatum and root-knot nematode, Meloidogyne incognita on brinjal. Journal of the Agricultural Science Society of North-East India, 13, 212–214.Google Scholar
  13. Borkakaty, D. (1993). Management of root-knot nematode, meloidogyne incognita (Kofoid and White, 1919) Chitwood, 1949 on Brinjal by Integrated Approach. M. Sc. (Agri.) Thesis, Assam Agricultural University, Jorhat.Google Scholar
  14. Cartia, G., & Greco, N. (1987). Effetti della solarizzazione del suolo su una coltura di peperone in serra. Colture Protette, 16(5), 61–65.Google Scholar
  15. Cartia, G., Greco, N., & Cirvilleri, G. (1988). Solarizzazione e bromuro di metile nella difesa dai parassiti del pomodoro in ambiente protetto. Proceedings Giornate Fitopatologiche, Lecce, Italy, 1, 437–488.Google Scholar
  16. Cartia, G., Greco, N., & Cipriano, T. (1989). Effect of soil solarization and fumigants on soil-borne pathogens of pepper in greenhouse. Acta Horticulturae, 255 , 111–116.Google Scholar
  17. Cooksey, D. A. (1988). Reduction in infection by Pseudomonas syringae pv. tomato on tomato using a nonpathogenic, copper-resistant strain combined with a copper bactericide. Phytopathology, 78, 601–603.CrossRefGoogle Scholar
  18. Dey, R. K., & Muhkopadhyay, A. N. (1994). Biological control of tomato damping-off by Gliocladium virens. Journal of Biological Control, 8, 34–40.Google Scholar
  19. Darekar, K. S., & Mahse, N. L. (1988). Assessment of yield losses due to root-knot nematode, Meloidogyne incognita Race 3 in tomato, brinjal and bitter gourd. International Nematology Network Newsletter, 5(4), 7–9.Google Scholar
  20. Darekar, K. S., & Patil, N. G. (1985). Screening of grapevine varieties to root-knot nematode. Journal of Maharashtra Agricultural Universities, 10, 104.Google Scholar
  21. Dutt, R., & Bhatti, D. S. (1986). Determination of effective doses and time of application of nematicides and castor leaves for controlling Meloidogyne javanica in tomato. Indian Journal of Nematology, 16, 8–11.Google Scholar
  22. Elad, Y., Katan, J., & Chet, I. (1980). Physical, biological, and chemical control integrated for soil borne diseases in potatoes. Phytopathology, 70, 418–422.CrossRefGoogle Scholar
  23. Ganga Visalakshy, P. N., & Krishnamoorthy, A. (2009). Development of bio-intensive integrated management for brinjal shoot and fruit borer, Leucinodes orbonalis Guene. International Conference on Horticulture, Bangalore.Google Scholar
  24. Ganguli, R. N., Singh, V. V., Dixit, S. A., & Kowshik, U. K. (1997). Efficacy of NPV (nuclear polyhedrosis virus) and endosulfan against tomato fruit borer, Heliothis armigera. Current Research, 26, 210–212.Google Scholar
  25. Gopalakrishnan, C., & Ajith Kumar, K. (2006). Increasing the field efficacy of Pseudo-monas fluorescens in the management of bacterial wilt in tomato, Lycopersicon esculentum Mill. National Symposium on Improving Input Use Efficiency in Horticulture, Indian Institute of Horticultural Research, Bangalore, pp. 197–198.Google Scholar
  26. Gopinatha, K. V., Nanje Gowda, D. N., & Nagesh, M. (2002). Management of root-knot nematode Meloidogyne incognita on tomato using bioagent Verticillium chlamydo-sporium, neem cake, marigold and carbofuran. Indian Journal of Nematology, 32, 179–181.Google Scholar
  27. Goswami, B. K., & Singh, S. (2002). Effect of Aspergillus niger and Cladosporium oxys-porum on plant vigour and root-knot nematode, Meloidogyne incognita multiplication on egg plant. Indian Journal of Nematology, 32, 94–96.Google Scholar
  28. Goswami, B. K., Rao, U., & Singh, S. (1998). Potentiality of some fungal bioagents against root-knot nematode, Meloidogyne incognita infecting tomato. Proceedings of First National Symposium on Pest Management in Horticultural Crops. Bangalore, pp. 304–307.Google Scholar
  29. Gupta, P. R., & Raja Ram Mohan Babu, B. (1998). Management of Helicoverpa armigera on tomato with Trichogramma pretiosum and Bacillus thuringiensis var. kurstaki. In P. Parvatha Reddy, N. K. Krishna Kumar, & A. Verghese (Eds.), Advances in pest management of horticultural crops (pp. 75–80). Bangalore: Association for Advancement of Pest Management in Horticultural Ecosystems.Google Scholar
  30. Hadar, Y., Chet, I., & Henis, Y. (1979). Biological control of Rhizoctonia solani damping -off with wheat bran culture of Trichoderma harzianum. Phytopathology, 69, 64–68.CrossRefGoogle Scholar
  31. Haider, M. G., Nath, R. P., Thakur, S. C., & Ojha, K. L. (1987). Interaction of Meloidogyne incognita and Pseudomonas solanacearum on tomato plants. Indian Journal of Nematology, 17, 174–176.Google Scholar
  32. Heald, C. M., & Robinson, A. F. (1987). Effect of soil solarization on Rotylenchulus reniformis in the lower Rio Grande Valley of Texas. Journal of Nematology, 19, 93–103.PubMedCentralPubMedGoogle Scholar
  33. Hasan, A. (1985a). Synergistic interaction between Pythium aphanidermatum and Rhizoctonia solani with Meloidogyne incognita on chilli. Nematologica, 31, 210–217.CrossRefGoogle Scholar
  34. Hasan, A. (1985b). Breaking resistance in chilli to root-knot nematode by fungal pathogens. Nematologica, 31, 210–217.CrossRefGoogle Scholar
  35. Hassan, M. G. & Sobita Devi (2004). Efficacy of bioagents against root-knot nematode, (Meloidogyne incognita) of tomato. National Symposium on Paradigms in Nematology Research for Biodynamic Farming, University of Agricultural Science, Bangalore, p. 88.Google Scholar
  36. Haseeb, A. (2003). Management of root-knot nematode and wilt complex and their interaction in vegetable crops using organic amendments and biocontrol agents. Report of the UPCAR Sponsored Project, Lucknow, 52 pp.Google Scholar
  37. Haseeb, A., Shukla, P. K., Kumar, V., & Khan, R. U. (2004). Comparative efficacy of bio- control agents, neem seed powder and pesticides against Meloidogyne incognita and Fusarium oxysporum on brinjal. National Symposium on Paradigms in Nematological Research for Biodynamic Farming, University of Agricultural Science, Bangalore, p. 80.Google Scholar
  38. Hussain, Z., & Bora, B. C. (2008). Integrated management of Meloidogyne incognita and Ralstonia solanacearum complex in brinjal. Indian Journal of Nematology, 38, 159–164.Google Scholar
  39. Jadon, K. S. (2009). Eco-friendly management of brinjal collar rot caused by Sclerotium rolfsii Sacc. Indian Phytopathology, 62, 345–347.Google Scholar
  40. Jain, R. K., & Bhatti, D. S. (1985). Effect of summer ploughing alone and in combination with some other effective practices on the incidence of root-knot nematode (Meloidogyne javanica) on tomato (Cultivar HS 101). Indian Journal of Nematology, 15, 262.Google Scholar
  41. Jain, R. K., & Gupta, D. C. (1991). Integrated management of root-knot nematode, Meloidogyne javanica infecting Solanum melongena. Afro–Asian Journal of Nematology, 1, 156–160.Google Scholar
  42. Jatala, P. (1985). Biological control of nematodes. In J. N. Sasser & C. C. Carter (Eds.), Advanced treatise on meloidogyne, biology and control (Vol. 1, pp. 303–308). Raleigh: North Carolina State University Graphics.Google Scholar
  43. Jenkins, S. F., & Averre, C. W. (1986). Problems and progress in integrated control of southern blight of vegetables. Plant Disease, 70, 614–619.CrossRefGoogle Scholar
  44. Jenkins, W. R., & Coursen, B. W. (1957). The effect of root-knot nematodes, Meloidogyne incognita acrita and M. hapla, on Fusarium wilt of tomato. Plant Disease Reporter, 41, 182–186.Google Scholar
  45. Jones, F. C. E. (1969). Integrated control of the potato cyst nematode. Proceedings of Fifth British Insecticide Fungicide Conference, 3, 646–656.Google Scholar
  46. Karthikeyan, G., Duraisamy, S., Sivakumar, C. V., & Duraisamy, S. (1999). Biological control of Pythium aphanidermatum, Meloidogyne incognita disease complex in chilli with organic amendments. Madras Agricultural Journal, 86, 320–323.Google Scholar
  47. Khaderkhan, H., Nataraju, M. S., & Nagaraja, G. N. (1998). Economics of IPM in tomato. In P. Parvatha Reddy, N. K. Krishna Kumar, & A. Verghese (Eds), Advances in IPM for horticultural crops (pp 151–152). Bangalore: Association for Advancement of Pest Management in Horticultural Ecosystems.Google Scholar
  48. Krishna Moorthy, P. N., & Krishna Kumar, P. N. (2002). Advances in the use of botanicals for the IPM of major vegetable pests. Proceedings of the International Conference on Vegetables, Bangalore. Dr. Prem Nath Agricultural Science Foundation, Bangalore, pp. 262–272.Google Scholar
  49. Krishnamoorthy, A., Gopalakrishnan, C., & Mani, M. (1999). Integration of egg parasitoid and HaNPV for the control of Helicoverpa armigera Hubn on tomato. International Seminar on IPM, Indian Institute of Chemical Technology, Hyderabad.Google Scholar
  50. Kumar, V., & Haseeb, A. (2009). Interactive effect of Meloidogyne incognita and Rhizoctonia solani on the growth and yield of tomato. Indian Journal of Nematology, 39, 178–181.Google Scholar
  51. Kumar, V., Haseeb, A., & Sharma, A. (2009a). Integrated management of Meloidogyne incognita-Fusarium solani disease complex of brinjal cv. Pusa Kranti. Annals of Plant Protection Sciences, 17, 192–194.Google Scholar
  52. Kumar, V., Haseeb, A., & Sharma, A. (2009b). Integrated management of Meloidogyne incognita and Fusarium solani disease complex of chilli. Indian Phytopathology, 62, 324–327.Google Scholar
  53. Mahalingam, C. A., & Saminathan, V. R. (2003). Efficacy of Bt, HaNPV and endosulfan individually and in combination for the management of the tomato fruit borer, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera). In S. Ignacimuthu & S. Jayaraj (Eds.), Biological control of insect pests (pp. 88–91). New Delhi: Phoenix Publishing House Pvt. Ltd.Google Scholar
  54. Maheswari, T. U., & Mani, A. (1988). Combined efficacy of Pasteuria penetrans and Paecilomyces lilacinus on the biocontrol of Meloidogyne javanica on tomato. International Nematology Network Newsletter, 5(3), 10–11.Google Scholar
  55. Maheswari, T. U., Mani, A., & Rao, P. K. (1987). Combined efficacy of the bacterial spore parasite Pasteuria penetrans (Thorne, 1940) and nematicides in the control of Meloidogyne javanica on tomato. Journal of Biological Control, 1, 53–57.Google Scholar
  56. Mao, W., Lewis, J. A., Lumsden, R. D., & Hebber, K. P. (1998). Biocontrol of selected soilborne disease of tomato and pepper plants. Crop Protection, 17, 535–542.CrossRefGoogle Scholar
  57. Mesta, R. K., Mohankumar, H. D., Shivaprasad, M., Tatagar, M. H., & Rao, M. S. L. (2009). Management of fruit rot and powdery mildew of chilli through Pseudomonas fluorescens. International Conference on Horticulture, Bangalore.Google Scholar
  58. Naik, D. (2004). biotechnological approaches for the management of wilt disease complex in capsicum (Capsicum annum L.) and egg plant (Solanum melongena) with special emphasis on biological control. Ph.D. thesis, Kuvempu University, Shimoga.Google Scholar
  59. Naik, D., Rao, M. S., Shylaja, M., Reddy, M. S., & Rahiman, B. A. (2003). Management of wilt disease complex in capsicum using Bacillus pumilus and Paecilomyces lilacinus. Proceedings of International Plant Growth Promoting Rhizobacteria Workshop, Calicut, India, pp. 276–281.Google Scholar
  60. Nagesh, M., Hussaini, S. S., Ramanujam, B., & Chidanandaswamy, B. S. (2006). Management of Meloidogyne incognita and Fusarium oxysporum f. sp. lycopersici wilt complex using antagonistic fungi in tomato. Nematology Mediterranea, 34, 63–68.Google Scholar
  61. Napiere, C. M. (1980). Varying inoculum levels of bacteria, nematodes and the severity of tomato bacterial wilt. Annals of Tropical Research, 2, 129–134.Google Scholar
  62. Napiere, C. M., & Quinio, A. J. (1980). Influence of root-knot nematode on bacterial wilt severity in tomato. Annals of Tropical Research, 2, 29–39.Google Scholar
  63. Oostenbrink, M. (1972). Evaluation and integration of nematode control methods. In J. M. Webster (Ed.), Economic nematology (pp. 497–514). New York: Academic Press.Google Scholar
  64. Ordentlich, A., Nachmias, A., & Chet, I. (1990). Integrated control of Verticillium dahliae in potato by Trichoderma harzianum and captan. Crop Protection, 9, 363–366.CrossRefGoogle Scholar
  65. Pani, A. K., & Das, S. N. (1972). Studies on etiological complexes in plant disease. I. Association of root-knot nematodes in bacterial wilt of tomato. J Res Orissa Univ Agri Technol, 2, 54–59.Google Scholar
  66. Parvatha Reddy, P., & Khan, R. M. (1988). Evaluation of Paecilomyces lilacinus for the biological control of Rotylenchulus reniformis infecting tomato as compared with carbofuran. Nematology Mediterranea, 16, 113–116.Google Scholar
  67. Parvatha Reddy, P., & Khan, R. M. (1989). Evaluation of biocontrol agent Paecilomyces lilacinus and carbofuran for the management of Rotylenchulus renfiromis infecting brinjal. Pakistan Journal of Nematology, 7, 55–59.Google Scholar
  68. Parvatha Reddy, P., & Singh, D. B. (1981). Assessment of avoidable yield loss in okra, brinjal, French bean and cowpea due to root-knot nematodes. Third International Symposium on Plant Pathology, New Delhi, pp. 93–94.Google Scholar
  69. Parvatha Reddy, P., Nagesh, M., & Devappa, V. (1997). Effect of integration of Pasteuria penetrans, Paecilomyces lilacinus and neem cake for the management of root-knot nematode infecting tomato. Pest Management Horticultural Ecosystems, 3, 100–104.Google Scholar
  70. Parvatha Reddy, P., Rao, M. S., & Nagesh, M. (1998). Effect of bare-root dip treatment of tomato seedlings in plant leaf extracts mixed with Paecilomyces lilacinus spores for the management of Meloidogyne incognita. In P. Parvatha Reddy, N. K. Krishna Kumar, & A. Verghese (Eds.), Advances in IPM for horticultural crops (pp. 334–338). Bangalore: Association for Advancement of Pest Management in Horticultural Ecosystems.Google Scholar
  71. Parvatha Reddy, P., Rao, M. S., & Nagesh, M. (1999). Eco-friendly management of Meloidogyne incognita on tomato by integration of Verticillium chlamydosporium with neem and calotropis leaves. Journal of Plant Disease Protection, 106, 530–533.Google Scholar
  72. Patel, S. K., Patel, H. V., & Patel, A. D. (2006). Integrated management of root-knot nematode in tomato nursery through botanical plant materials. Indian Journal of Nematology, 36, 307–308.Google Scholar
  73. Perveen, S., Ehteshamul-Haque, S., & Ghaffar, A. (1998). Efficacy of Pseudomonas aeruginosa and Paecilomyces lilacinus in the control of root rot-root knot disease complex on some vegetables. Nematology Mediterranea, 26, 209–212.Google Scholar
  74. Prasad, K. S. K. (1989). Nematological problems and progress of research on potato in India. Fourth Group Meeting on Nematology. Problems of Plantation Crops, University of Agricultural Science, Bangalore.Google Scholar
  75. Quereshi, Q. G., Mathur, N. M., & Srivastava, R. C. (1998). Management of brinjal shoot and fruit borer Leucinodes orbonalis Guenee using Bacillus thuringiensis var kurstaki. In P. Parvatha Reddy, N. K. Krishna Kumar, & A. Verghese (Eds.), Advances in pest management of horticultural crops (pp. 81–83). Bangalore: Association for Advancement of Pest Management in Horticultural Ecosystems.Google Scholar
  76. Rahman, M. A., Vijaya, M., Chiranjeevi, C. H., Sai Reddy, C., & Reddy, I. P. (2002). Disease management of Solanaceous vegetable crops at nursery stage with biocontrol agents. Proceedings of the International Conference on Vegetables, Bangalore, India, pp. 352–355. Dr. Prem Nath Agricultural Science Foundation, Bangalore.Google Scholar
  77. Raja, J., Rajendran, B., & Papaiah, C. M. (1998). Management of egg plant shoot and fruit borer, Leucinodes orbonalis Guen. In P. Parvatha Reddy, N. K. Krishna Kumar, & A. Verghese (Eds.), Advances in pest management of horticultural crops (pp. 84–86). Bangalore: Association for Advancement of Pest Management in Hortilcultural Ecosystems.Google Scholar
  78. Rajendran, B. (1998). Effect of neem oil and insecticide on the population and parasitization of eggplant spotted beetle, Henosepilachna vignitioctopunctata F. (Cocinellidae: Coleoptera). In P. Parvatha Reddy, N. K. Krishna Kumar, & A. Verghese (Eds.), Advaces in IPM for horticultural crops (pp. 102–105). Bangalore: Association for Advancement of Pest Management in Horticultural Ecosystems.Google Scholar
  79. Rangaswamy, S. D., Parvatha Reddy, P., Nagesh, M., & Nanje Gowda, D. N. (1999). Integrated management of Meloidogyne incognita using Pasteuria penetrans, Tricho-derma viride and oil cakes in tomato. Pest Management in Horticulture Ecosystems, 5, 122–126.Google Scholar
  80. Rao, M. S., & Parvatha Reddy, P. (1992). Innovative approaches of utilization of biocontrol agents-Paecilomyces lilacinus and Verticillium chlamydosporium against root-knot nematode on tomato (Abstract). First Afro-Asian nematology symposium, Aligarh Muslim University, Aligarh, pp. 25–26.Google Scholar
  81. Rao, M. S., & Parvatha Reddy, P. (1993a). Effective use of ‘Welgro’ and ‘RD-9 Repelin’ for the management of root-knot nematode on tomato. In R. P. Singh, M. S. Chari, A. K. Raheja, & W. Kraus (Eds.), Neem and environment (Vol. 2, pp. 651–656). New Delhi: Oxford & IBH Publishing Co. Pvt. Ltd.Google Scholar
  82. Rao, M. S., & Parvatha Reddy, P. (1993b). Interactive effect of Verticillium chlamydosporium and castor cake on the control of root-knot nematode on eggplant. In D. Rajagopal, R. D. Kale, & K. Bano (Eds.). Soil organisms and sustainability (pp. 114–118). Bangalore: Indian Society of Soil Biology and Ecology, University of Agricultural Science.Google Scholar
  83. Rao, M. S., & Parvatha Reddy, P. (1994). A method for conveying Paecilomyces lilacinus to soil for the management of root-knot nematodes on eggplant. Nematologia Mediterranean, 22, 265–267.Google Scholar
  84. Rao, M. S., & Parvatha Reddy, P. (2001). Control of Meloidogyne incognita on eggplant using Glomus mosseae integrated with Paecilomyces lilacinus and neem cake. Nematologia Mediterranean, 29, 153–157.Google Scholar
  85. Rao, M. S., Mohandas, S., Parvatha Reddy, P., & Khan, R. M. (1993a). Synergistic effect of endomycorrhizal fungus (Glomus fasciculatum) and biocontrol fungus (Paecilomyces lilacinus) in the management of root-knot nematode infecting tomato. In D. Rajagopal, R. D. Kale, & K. Bano (Eds.), Soil Organisms and Sustainability ( pp. 119–123). Bangalore: Indian Society of Soil Biology and Ecology, University of Agricultural Science.Google Scholar
  86. Rao, M. S., Mohan Das, S., Parvatha Reddy, P., & Khan, R. M. (1993b). Management of reniform nematode on egg plant by integrating a botanical (castor cake), mycorrhiza (Glomus fasciculatum) and bio-agent (Paecilomyces lilacinus). Golden jubilee symposium on horticulture research—changing scenario (pp. 259–260), Bangalore.Google Scholar
  87. Rao, M. S., Parvatha Reddy, P., & Mohandas, S. (1995). Studies on development of a biorational management strategy against root-knot nematode attacking tomato. In G. Swarup, D. R. Dasgupta, & J. S. Gill (Eds.), National symposium on nematode problems of India—an appraisal of the nematode management with eco-friendly approaches, Nematol. Soc. of India, New Delhi, p. 14.Google Scholar
  88. Rao, M. S., Parvatha Reddy, P., & Mohandas, S. (1996). Effect of integration of Calotropis procera leaf and Glomus fasciculatum on the management of Meloidogyne incognita infesting tomato. Nematologia Mediterranean, 24, 59–61.Google Scholar
  89. Rao, M. S., Parvatha Reddy, P., Somasekhar, N., & Nagesh, M. (1997a). Management of root-knot nematodes, Meloidogyne incognita in tomato nursery by integration of endomycorrhiza, Glomus fasciculatum with castor cake. Pest Management in Horticulture Ecosystems, 3, 31–35.Google Scholar
  90. Rao, M. S., Parvatha Reddy, P., & Nagesh, M. (1997b). Integration of Paecilomyces lilacinus with neem leaf suspension for the management of root-knot nematodes on eggplant. Nematologia Mediterranean, 25, 249–252.Google Scholar
  91. Rao, M. S., Parvatha Reddy, P., & Nagesh, M. (1997c). Management of root-knot nematode, Meloidogyne incognita on tomato by integration of Trichoderma harzianum with neem cake. Journal of Plant Diseases and Protection, 104, 423–425.Google Scholar
  92. Rao, M. S., Parvatha Reddy, P., & Nagesh, M. (1998a). Integrated management of Meloi-dogyne incognita on tomato using Verticillium chlamydosporium and Pasteuria penetrans. Pest Management in Horticulture Ecosystems, 4, 32–35.Google Scholar
  93. Rao, M. S., Parvatha Reddy, P., & Nagesh, M. (1998b). Integrated management of Meloi-dogyne incognita on tomato using oil cakes and a bioagent, Verticillium chlamydos-porium. In P. Parvatha Reddy, N. K. Krishna Kumar, & A. Verghese (Eds.), Advances in IPM for horticultural crops (pp. 345–348). Bangalore: Association for Advancement of Pest Management in Hortilcultural Ecosystems.Google Scholar
  94. Rao, M. S., Parvatha Reddy, P., & Nagesh, M. (1998c). Evaluation of plant based formulations of Trichoderma harzianum for the management of Meloidogyne incognita on eggplant. Nematologia Mediterranean, 26, 59–62.Google Scholar
  95. Rao, M. S., Parvatha Reddy, P., & Nagesh, M. (1998d). Evaluation of Paecilomyces lilacinus cultured on neem cake extract for the management of root-knot nematodes on eggplant. Pest Management in Horticulture Ecosystems, 4, 116–119.Google Scholar
  96. Rao, M. S., Parvatha Reddy, P., & Sukhada, M. (1998e). Biointensive management of Meloidogyne incognita on eggplant by integrating Paeciloymces lilacinus and Glomus mosseae. Nematologia Mediterranean, 26, 213–216.Google Scholar
  97. Rao, M. S., Parvatha Reddy, P., Sukhada, M., Nagesh, M., & Pankaj (1998f). Management of root-knot nematodes on eggplant by integrating endomycorrhiza (Glomus fasciculatum) and castor (Ricinus communis) cake. Nematologia Mediterranean, 26, 217–219.Google Scholar
  98. Rao, M. S., Parvatha Reddy, P., & Nagesh, M. (1999). Bare root-dip treatment of tomato seedlings in calotropis or castor leaf extracts mixed with Paecilomyces lilacinus spores for the management of Meloidogyne incognita. Nematologia Mediterranean, 27, 323–326.Google Scholar
  99. Rao, M. S., Naik, D., Shylaja, M., & Parvatha Reddy, P. (2002a). Prospects for the management of nematode disease complex in capsicum using biological control agents. Proceeding of international conference on vegetables, Bangalore, pp. 347–351.Google Scholar
  100. Rao, M. S., Naik, D., & Shylaja, M. (2004). Bio-intensive management of root-knot nematodes on bell pepper using Pochonia chlamydosporia and Pseudomonas fluorescens. Nematology Mediterranea, 32, 159–163.Google Scholar
  101. Rao, M. S., Ramachandran, N., Sowmya, D. S., Ratnamma, K., Chaya, M. K., & Manoj Kumar, R. (2009). Biological control of nematode induced disease complex in certain vegetable crops. International conference on horticulture, Bangalore.Google Scholar
  102. Reddy, D. D. R. (1985). Analysis of crop losses in tomato due to Meloidogyne incognita. Indian Journal of Nematology, 15, 55–59.Google Scholar
  103. Riga, E., Pierce, F., & Collins, H. (2006). The use of arugula on its own and in combination with systemic nematicides against plant parasitic nematodes of potatoes (Abstracts). Second international biofumigation symposium, Idaho, USA, p. 42.Google Scholar
  104. Ristaino, J. B., Perry, K. B., & Lumsden, R. D. (1991). Effect of solarization and Gliocladium virens on sclerotia of Sclerotium rolfsii, soil microflora, and the incidence of southern blight of tomato. Phytopathology, 91, 1117–1124.CrossRefGoogle Scholar
  105. Ristaino, J. B., Perry, K. B., & Lumsden, R. D. (1996). Soil solarization and Gliocladium virens reduce the incidence of southern blight (Sclerotium rolfsii) in bell pepper in the field. Biocontrol Science and Technology, 6, 583–593.CrossRefGoogle Scholar
  106. Routaray, B. N., & Sahoo, H. (1985). Integrated control of root-knot nematode, Meloidogyne incognita with neem cake and granular nematicides on tomato. Indian Journal of Nematology, 15, 261.Google Scholar
  107. Saikia, M. K., & Borah, A. (2008). Comparative efficacy of fungal and bacterial bioagents with nematicides against Meloidogyne incognita on brinjal. Indian Journal of Nematology, 38, 159–164.Google Scholar
  108. Sankarimeena, K., Jonathan, E. I., Devarajan, K., & Raghuchander, T. (2012). Pseudomonas fluorescens induced systemic resistance in tomato against Meloidogyne incognita. Indian Journal of Nematology, 42, 5–10.Google Scholar
  109. Sardana, H. R., Trivedi, T. P., Bambawale, O. M., Sabir, N., Singh, R. V., Arora, S., Krishna Moorthy, P. N., Pandey, P. K., Pandey, K. K., & Sengupta, A. (2004). Validated IPM technologies: Vegetable crops. In A. Singh, H. R. Sardana, & N. Sabir (Eds.), Validated IPM technologies for selected crops (pp. 119–148). New Delhi: National Centre for Integrated Pest Management (ICAR).Google Scholar
  110. Sheela, M. S., Jiji, T., & Nisha, M. S. (2002). Evaluation of different control strategies for the management of nematodes associated with vegetables (brinjal) (Abstracts). International conference on Vegetables, Bangalore, p. 268.Google Scholar
  111. Siddiqui, I. A., & Ehteshamul-Haque, S. (2001). Suppression of the root rot-root knot disease complex by Pseudomonas aeruginosa in tomato: The influence of inoculum density, nematode populations, moisture and other plant-associated bacteria. Plant and Soil, 237, 81–89. http://www.springerlink.com/content/100326/?p=3da034a628b945dcbc3418bb3e615468&pi=0.CrossRefGoogle Scholar
  112. Siddiqui, I. A., Ehteshamul-Haque, S., & Ghaffar, A. (1999). Root-dip treatment with Pseudomonas aeruginosa and Trichoderma spp. in the control of root rot-root knot disease complex in chilli (Capsicum annuum L.). Pakistan Journal of Nematology, 17, 67–75.Google Scholar
  113. Siddiqui, I. A., Qureshi, S. A., Sultana, V., Ehteshamul-Haque, S., & Ghaffar, A. (2000). Biological control of root rot-root knot disease complex of tomato. Plant and Soil, 227, 163–169.CrossRefGoogle Scholar
  114. Singh, D. (1991). Studies on the Effect of Tagetes Species on Meloidogyne javanica Infectivity in Brinjal (Solanum melongena). Ph. D. thesis, Haryana Agricultural University, Hisar, p. 83.Google Scholar
  115. Singh, S. P. (2000). Application of biotechnology in bio-intensive integrated pest management. In K. L. Chadha, P. N. Raveendran, & L. Sahijram (Eds.), Biotechnology in horticultural and plantation crops (p. 836). New Delhi: Malhotra Publishing House.Google Scholar
  116. Singh, R. V., & Gill, J. S. (1998). Important nematode problems on vegetables and their management. In S. M. Paul Khurana (Ed.), Pathological problems of economic crop plants and their management (pp. 557–570). Jodhpur: Scientific Publishers.Google Scholar
  117. Singh, H., & Singh, G. (1975). Biological studies on Heliothis armigera (Hubner) in Punjab. Indian Journal of Entomology, 37, 154–164.Google Scholar
  118. Singh, R. S., Singh, P. P., & Bedi, J. S. (2002). Final report of DBT scheme on biocontrol of seed and soil-borne diseases of vegetables. Punjab Agricultural University, Ludhiana, p. 90.Google Scholar
  119. Sitaramaiah, K., & Naidu, H. (2003). Plant parasitic nematodes-management opportunities and challenges. In P. C. Trivedi (Ed.), Nematode management in plants (pp. 57–80). Jodhpur: Scientific Publishers.Google Scholar
  120. Smits, B. G., & Noguera, R. (1982). Effect of Meloidogyne incognita on the pathogenicity of different isolates of Fusarium oxysporum on brinjal (Solanum melongena L.). Agronomia Tropical, 32, 284–290.Google Scholar
  121. Sreenivasa, M. N. (1997). Influence of VAM and Trichoderma harzianum on Sclerotium in three varieties of chilli. Environment Ecology, 15, 343–345.Google Scholar
  122. Srinivasan, P. M. (1958). Control of fruit borer, Heliothis armigera (Hub) on tomato. Indian Journal of Horticulture, 16, 187–188.Google Scholar
  123. Srinivasan, K., Krishna Moorthy, P. N., & Raviprasad, T. N. (1994). African marigold as a trap crop for the management of the fruit borer Helicoverpa armigera on tomato. International Journal of Pest Mangement, 40, 56–63.CrossRefGoogle Scholar
  124. Subramanyam, S., Rajendran, G., & Vadivelu, S. (1990). Estimation of loss in tomato due to Meloidogyne incognita and Rotylenchulus reniformis. Indian Journal of Nematology, 20, 239–240.Google Scholar
  125. Tewari, G. C., & Krishna Murthy, P. N. (1984). Yield loss in tomato caused by fruit borer. Indian Journal of Agricultural Science, 54, 341–343.Google Scholar
  126. Tripathi, P. K., & Singh, C. S. (2006). Effect of some compatible biocontrol agents along with mustard cake and furadan on Meloidogyne incognita infecting tomato plant. Indian Journal of Nematology, 36, 309–311.Google Scholar
  127. Troncoso-Rojas, R., Espinoza, C., Sánchez-Estrada, A., Sergio-García, H., Pryor, B., Baez-Flores, M. E., & Tiznado-Hernández, M. E. (2008). Evaluation of isothiocy-anates to control postharvest fruit and vegetable losses by fungal infections in Mexico. Third international biofumigation symposium, Canberra, Australia.Google Scholar
  128. Tsror, L., Lebiush, S., Meshulam, M., Matan, E., & Lazzeri, L. (2006). Biofumigation for controlling soil-borne diseases of tomato, potato and olive. Second international biofumi-gation symposium, Idaho, USA, p. 46.Google Scholar
  129. Vyas, R. V., Patel, B. A., Patel, B. N., & Patel, J. G. (2009). Integrated management of root-knot nematode in brinjal under field conditions. Indian Journal of Nematology, 39, 35–37.Google Scholar
  130. Winslow, R. D., & Willis, R. J. (1972). Nematode diseases of potato. In J. M. Webster (Ed.), Economic Nematology (pp. 17–48). London: Academic Press.Google Scholar
  131. Zaki, F. A. (1998). Biological control of Meloidogyne javanica in tomato by Paecilomyces lilacinus and castor leaves. Indian Journal of Nematology, 28, 132–139.Google Scholar
  132. Zaki, F. A., & Bhatti, D. S. (1989). Effect of castor (Ricinus communis) leaves in combination with different fertilizer doses on Meloidogyne javanica infecting tomato. Indian Journal of Nematology, 19, 171–176.Google Scholar
  133. Zaki, F. A., & Bhatti, D. S. (1991). Effect of castor Ricinus communis and the biocontrol fungus, Paecilomyces lilacinus on. Meloidogyne javanica. Nematologica, 36, 114–122.CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Former DirectorIndian Institute of Horticultural ResearchBangaloreIndia

Personalised recommendations