Advertisement

Temperate Fruit Crops

  • P. Parvatha Reddy
Chapter

Abstract

Economic importance and losses, symptoms/damage, pre-disposing factors, epidemiology, survival and spread, and biointensive integrated management of insect and mite pests, fungal, bacterial, viral/mycoplasma diseases, nematode pests, and disease complexes of temperate fruit crops (apple, peach, plum, and pear) using physical, methods, cultural methods, botanical pesticides, chemical pesticides, bioagents, arbuscular mycorrhizal fungi, and host resistance are discussed.

Keywords

Integrate Pest Management Botrytis Cinerea Methyl Bromide Gray Mold Bordeaux Mixture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Burchill, R. T., & Cook, R. T. A. (1971). The interaction of urea and microorganisms in suppressing development of perithecia of Venturia inequalis (Cke.) Wint. In T. F. Preace & C. H. Dickensen (Eds.), Ecology of leaf surface microorganisms (pp. 471–483). New York: Academic Press.Google Scholar
  2. Calvo, J., Calvente, V., De Orellano, M. E., Benuzzi, D., & De Tosetti, M. I. S. (2003). Improvement in the biocontrol of post-harvest diseases of apples with the use of yeast mixtures. BioControl, 48, 579–593.CrossRefGoogle Scholar
  3. Chand-Goyal, T., & Spotts, R. A. (1996a). Post-harvest biological control of blue mold of apple and brown rot of sweet cherry by natural saprophytic yeasts alone or in combination with low doses of fungicides. Biological Control, 6, 252–259.CrossRefGoogle Scholar
  4. Chand-Goyal, T., & Spotts, R. A. (1996b). Biological control of postharvest diseases of apple and pear under semi-commercial and commercial conditions using three saprophytic yeasts. Biological Control, 10, 199–206.CrossRefGoogle Scholar
  5. Droby, S., Wisniewski, M., El-Ghaouth, A., & Wilson, C. (2003). Influence of food additives on the control of post-harvest rots of apple and peach and efficacy of the yeast-based biocontrol product Aspire. Postharvest Biology and Technology, 27, 127–135.CrossRefGoogle Scholar
  6. El-Ghaouth, A., Smilanick, J. L., Brown, G. E., Ippolito, A., Wisniewski, M., & Wilson, C. L. (2000). Application of Candida saitoana and glycolchitosan for the control of postharvest diseases of apple and citrus fruits under semi-commercial conditions. Plant Disease, 84, 243–248.CrossRefGoogle Scholar
  7. Gupta, G. K. (1985). Apple Scab (Venturia inaequalis). R. Merck (India) Ltd., Bombay, 36 pp.Google Scholar
  8. Gupta, V. K., & Sharma, K. (2004). Integration of chemicals and biocontrol agents for managing white root rot of apple. Acta Horticulturae, 635, 141–149.Google Scholar
  9. Janisiewicz, W. J. (1988). Biocontrol of postharvest diseases of apples with antagonist mixtures. Phytopathology, 78, 194–198.CrossRefGoogle Scholar
  10. Janisiewicz, W. J., & Bors, B. (1995). Development of a microbial community of bacterial and yeast antagonists to control wound-invading postharvest pathogens of fruits. Applied and Environmental Microbiology, 61, 3261–3267.PubMedCentralPubMedGoogle Scholar
  11. Leibinger, W., Breuker, B., Hahn, M., & Mendgen, K. (1997). Control of post-harvest pathogens and colonization of the apple surface by antagonistic microorganisms in the field. Phytopathology, 87, 1103–1110.PubMedCrossRefGoogle Scholar
  12. Lindow, S. E., McGourty, G., & Elkins, R. (1996). Interactions of antibiotics with Pseudomonas fluorescens strain A506 in the control of fire blight and frost injury to pear. Phytopathology, 86, 841–848.CrossRefGoogle Scholar
  13. McLaughlin, R. J., Wisniewski, J. I., Wilson, C. L., & Chalutz, E. (1990). Effect of inoculum concentration and salt solutions on the biological control of post-harvest diseases of apples with Candida sp. Phytopathology, 80, 456–461.CrossRefGoogle Scholar
  14. Nyczepir, A. P., & Rodriguez-Kabana, R. (2004). Effectiveness of biofumigation for ring nematode control in a young peach orchard. First International Biofumigation Symposium, Florence, Italy.Google Scholar
  15. Pusey, P. L., Wilson, C. L., Hotchkiss, M. W., & Franklin, J. D. (1986). Compatibility of Bacillus subtilis for postharvest control of peach brown rot with commercial fruit waxes, dicloran, and cold-storage conditions. Plant Disease, 70, 587–590.CrossRefGoogle Scholar
  16. Sugar, D., & Spotts, R. A. (1999). Control of postharvest decay in pear by four laboratory- grown yeasts and two registered biocontrol products. Plant Disease, 83, 155–158.CrossRefGoogle Scholar
  17. Trivedi, T. P., Sardana, H. R., & Thakur, V. S. (2004a). Validated Integrated Pest Management (IPM) technologies: Apple. In A. Singh, H. R. Sardana, & N. Sabir (Eds.), Validated Integrated Pest Management (IPM) technologies for selected crops (pp. 163–177). New Delhi: National Centre for Integrated Pest Management (ICAR).Google Scholar
  18. Trivedi, T. P., Sardana, H. R., Shukla, R. P., & Misra, A. K. (2004b). Validated Integrated Pest Management (IPM) technologies: Mango. In A. Singh, H. R. Sardana, & N. Sabir (Eds.), Validated Integrated Pest Management (IPM) technologies for selected crops (pp. 149–162). New Delhi: National Centre for Integrated Pest Management (ICAR).Google Scholar
  19. Wisniewski, M., Droby, S., Chalutz, E., & Eilam, Y. (1995). Effect of Ca2+ and Mg2+ on Botrytis cineria and Pencillium expansum in vitro and on the biocontrol activity of Candida oleophila. Plant Pathology, 44, 1016–1024.CrossRefGoogle Scholar
  20. Zhou, T., & Schneider, K. (1998). Control of peach brown rot by preharvest applications of an isolate of Pseudomonas syringae (Abstr.). 7th International Congress of Plant Pathology, 3, 20.Google Scholar
  21. Zhou, T., Northover, J., & Schneider, K. (1999). Biological control of postharvest diseases of peach with phyllosphere isolates of Pseudomonas syringae. Canadian Journal of Plant Pathology, 21, 375–381.CrossRefGoogle Scholar
  22. Zhou, T., Northover, J., Schneider, K., & Lu, X. (2002). Interaction between Pseudomonas syringae MA-4 and cyprodinil in the control of blue mold and gray mold of apple. Canadian Journal of Plant Pathology, 24, 154–161.CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Former DirectorIndian Institute of Horticultural ResearchBangaloreIndia

Personalised recommendations