Tropical Fruit Crops

  • P. Parvatha Reddy


Economic importance and losses, symptoms/damage, pre-disposing factors, epidemiology, survival and spread, and biointensive integrated management of insect and mite pests, fungal, bacterial, viral/mycoplasma diseases, nematode pests, and disease complexes of tropical fruit crops (banana, citrus, sapota, papaya, jack fruit, strawberry, and mulberry) using physical methods, cultural methods, botanical pesticides, chemical pesticides, bioagents, arbuscular mycorrhizal fungi, and host resistance are discussed.


Feeder Root Paecilomyces Lilacinus Neem Cake Acid Lime Phytophthora Palmivora 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anon. (1993). Biennial report (1991–93) of AICRP on plant parasitic nematodes with integrated approach for their control, Department of Nematology, Haryana Agriculture University, Hisar, pp. 80.Google Scholar
  2. Baghel, P. P. S. (1995). Nematode problems in citrus. In G. Swarup, D. R. Dasgupta, & J. S. Gill (Eds.), Nematode pest management-an appraisal of eco-friendly approach (pp. 203–210). New Delhi: Nematology Society of India.Google Scholar
  3. Baghel, P. P. S., & Bhatti, D. S. (1983a). Evaluation of pesticides for the control of phytonematodes on citrus. Third nematology symposium, Y.S. Parmar University of Horticulture & Forestry, Solan, India, pp. 38–39.Google Scholar
  4. Bélair, G., & Coulombe, J. (2008). Green manure and biofumigation for root lesion nematode and Verticillium wilt management in strawberry production. Third international biofumigation symposium, Canberra, Australia.Google Scholar
  5. Bharadwaj, L. N., & Sharma, S. K. (2000). Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh. In S. R. Sarma (Ed.), Progress report for the period Sept. 1997–Aug. 2000 of national network project on phytophthora diseases of horticultural crops (pp. 26–40). Calicut: Indian Institute of Spices Research.Google Scholar
  6. Blake, C. D. (1966). The histological changes in banana roots caused by Radopholus similis and Helicotylenchus multicinctus. Nematologica, 12, 129–132.Google Scholar
  7. Chakravarti, B. P., Porwal, S., & Rangarajan, M. (1966). Studies on citrus canker in Rajasthan I. Disease incidence and survival of the pathogen. Labdev Journal of Science and Technology, 4, 262–265.Google Scholar
  8. Channabasappa, B. S., Krishnappa, K., & Reddy, B. M. R. (1995). Utilization of ecofriendly biological agents and biocomponents in the integrated management of Radopholus similis on banana. National symposium on nematode problems of India—an appraisal of the nematode management with ecofriendly approaches and biocomponents, Indian Agriculture Research Institute, New Delhi.Google Scholar
  9. Charles, J. S. K., Venkitesan, T. S., Thomas, Y., & Varkey, P. A. (1985). Correlation of plant growth components to bunch weight in banana infested with burrowing nematode, Radopholus similis (Cobb). Indian Journal of Nematology, 15, 186–190.Google Scholar
  10. Chitwood, B. G., & Toung, M. C. (1960). Host parasite interactions of the Asiatic pyroid citrus nematode. Plant Disease Reporter, 48, 848–854.Google Scholar
  11. Chona, B. L., Sethi, C. L., Swarup, G., & Gill, J. S. (1965). Citrus nematode (Tylenchulus semipenetrans Cobb, 1913) associated with die-back disease of citrus. Indian Journal of Hortticulture, 22, 370–373.Google Scholar
  12. Eckert, J. W., & Eaks, I. L. (1989). Post-harvest disorders and diseases of citrus fruits. In W. Reuther, E. C. Calavan, & G. E. Carman (Eds.), The citrus industry (Vol. 5, pp. 179–250). Oakland: University of California Press.Google Scholar
  13. Gardner, P. D., Eckert, J. W., Baritelle, J. L., & Bancroft, M. N. (1986). Management strategies for control of Pencillium decay in lemon packing houses: Economic benefits. Crop Protection, 5, 26–32.CrossRefGoogle Scholar
  14. Govindaiah, Dandin, S. B., & Sharma, D. D. (1991). Pathogenicity and avoidable leaf yield loss due to Meloidogyne incognita in mulberry (Morus alba L.). Indian Journal of Nematology, 21, 52–57.Google Scholar
  15. Govindaiah, Dandin, S. B., Philip, T., & Datia, R. K. (1990). Effect of marigold (Tagetes patula) intercropping against Meloidogyne incognita infecting mulberry. Indian Journal of Nematology, 20, 96–99.Google Scholar
  16. Gupta, V. P. (2000). Biological control of mulberry diseases—The current status. In M. K. Dasgupta (Ed.), Diseases of plantation crops, spices, betelvine and mulberry (pp. 145–148). Srineketan: Visva-Bharati Publications.Google Scholar
  17. Gupta, V. P. (2001). Diseases of mulberry and their management. In P. C. Trivedi (Ed.), Plant pathology (pp. 130–164). Jaipur: Pointer Publishers.Google Scholar
  18. Gupta, V. P., Mishra, R. K., & Sarkar, A. (1998). Management of nursery diseases of mulberry through integrated approach. 7th International Congress of Plant Pathology, Edinburgh, Scotland, U.K., Vol. 3, Abstr. 3.7.80.Google Scholar
  19. Gupta, V. P., Sharma, D. D., Rekha, M., & Chandrasekar, D. S. (1999). Integration of Trichoderma pseudokoningii with agrochemicals for disease management and plant development in mulberry. Archiv fur Phytopasthologie und Pflanzenschutz, 32, 521–529.CrossRefGoogle Scholar
  20. Jonathan, E. I., & Cannayane, I. (2002). Field application of biocontrol agents for management of spiral nematode, Helicotylenchus multicinctus in banana (Abstr.). Global conference on banana and plantain, Bangalore, p. 193.Google Scholar
  21. Jonathan, E. I., & Rajendran, G. (2000). Assessment of avoidable yield loss in banana due to root-knot nematode, Meloidogyne incognita. Indian Journal of Nematology, 30, 162–164.Google Scholar
  22. Kabayashi, N. (1989a). Charcoal compost fixed antagonistic microorganisms and its effect to soil-borne diseases (Abstr.). Annals of the Phytopathological Society of Japan, 55.Google Scholar
  23. Khan, T. A. (1991). Studies on a disease complex of papaya caused by Meloidogyne incognita and Fusarium solani. Final technical report, DST Project, Aligarh Muslim University, Aligarh, 47 pages.Google Scholar
  24. Khan, T. A., & Hussain, S. I. (1990). Effect of interaction of various inoculum levels of Meloidogyne incognita and Fusarium solani on seedling emergence and post-emergence damping-off of papaya seedlings. New Agriculturist, 1, 17–20.Google Scholar
  25. Khan, T. A., Khan, S.T., Fazal, M., & Siddiqui, Z. A. (1997). Biological control of Meloidogyne incognita and Fusarium solani disease complex in papaya using Paecilomyces lilacinus and Trichoderma harzianum. Indian Journal of Nematology, 7, 127–132.Google Scholar
  26. Kishore, R., Kamalwanshi, R. S., & Pandey, M. (2005). Effect of root-knot nematode with Fusarium solani on damping-off of papaya. Indian Journal of Nematology, 35, 96–97.Google Scholar
  27. Kumutha, K. (2001). Symbiotic influence of AM fungi and Rhizobacteria on biochemical and nutritional changes in mulberry (Morus alba). Ph.D. thesis, Tamil Nadu Agriculture. University, Coimbatore.Google Scholar
  28. Laqman Khan, M. (2001). Dr. Y.S. Paramar University of Horticulture and Forestry, Solan, Himachal Pradesh. In S. C. Dhawan et al. (Eds.), Indian nematology-progress and prospectives (pp. 153–158). New Delhi: Division of Nematology, Indian Agricultural Research Institute.Google Scholar
  29. Loos, C. A. (1959). Symptom expression of Fusarium wilt disease of the Gros Michel banana in the presence of Radopholus similis (Cobb, 1893) Thorne, 1949 and Meloidogyne incognita acrita Chitwood, 1949. Proceedings of the Helminthological Society of Washington, 26, 103–111.Google Scholar
  30. Mani, A. (1986). Occurrence of Meloidogyne javanica on citrus in Andhra Pradesh (India). International Nematology Network Newsletter, 3(2), 9–10.Google Scholar
  31. Mukhopadhyaya, M. C., & Dalal, M. R. (1971). Effect of two nematicides on Tylenchulus semipenetrans and on sweet lime yield. Indian Journal of Nematology, 1, 95–97.Google Scholar
  32. Mukhopadhyaya, M. C., & Suryanarayana, D. (1969). Citrus decline in Haryana : Role of Tylenchulus semipenetrans and its control. Indian Phytopathology, 22, 495–497.Google Scholar
  33. Muthulakshmi, M., Devarajan, K., & Jonathan, E. I. (2010). Biocontrol of root-knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood in mulberry (Morus alba L.). Journal of Pesticides, 3, 479–482.Google Scholar
  34. Nair, K. K. R. (1979). Studies on the chemical control of banana nematodes. Agricultural Research Journal of Kerala, 17, 232–235.Google Scholar
  35. Nair, M. R. G. K., Das, N. M., & Menon, M. R. (1966). On the occurrence of the burrowing nematode Radopholus similis (Cobb, 1893) Thorne, 1949 on banana in Kerala. Indian Journal of Entomology, 28, 553–554.Google Scholar
  36. Naqvi, S. A. M. H. (2001). Diagnosis and management of fungal diseases of citrus. In S. Singh & S. A. M. H. Naqvi (Eds.), Citrus (pp. 375–391). Lucknow: International Book Distributing Company.Google Scholar
  37. Newhall, A. G. (1958). The incidence of Panama disease of banana in the presence of the root-knot and the burrowing nematodes (Meloidogyne incognita and Radopholus similis). Plant Disease Reporter, 42, 853–856.Google Scholar
  38. Nirvan, R. S. (1961). Citrus canker and its control. Horticultural Advances, 5, 124–125.Google Scholar
  39. Patil, N. M., Dharne, P. K., & Deshmukh, S. S. (1999). Sucker dip treatment in monocrotophos with intercrops for the management of plant parasitic nematodes in banana. Seminar on technological advancement in banana production, handling and processing management, Jalgaon, Maharashtra, pp. 126–128.Google Scholar
  40. Philip, T., Sharma, D. D., & Govindaiah (1996). Biological control of mulberry root-rot disease. Indian Silk, 34, 6–8.Google Scholar
  41. Ponte, J. J. D. A. (1980). Meloidogyne—importanica and control no nordeste. Sociedade Brasileira Nematologia, 4, 1–14.Google Scholar
  42. Porras, M., Barrau, C., Arroyo, F. T., Santos, B., Blanco, C., & Romero, F. (2007). Reduction of Phytophthora cactorum in strawberry fields by Trichoderma spp. and soil solarization. Plant Disease, 91, 142–146.CrossRefGoogle Scholar
  43. Porras, M., Barrau, C., Romero, E., Zurera, C., & Romero, F. (2009). Effect of biofumigation with brassica carinata and soil solarization on phytophthora spp. and strawberry yield. Acta Horticulture, 842, 969–972.Google Scholar
  44. Prasad, S. K., & Chawla, M. L. (1965). Observations on the population fluctuations of citrus nematode, Tylenchulus semipenetrans Cobb, 1913. Indian Journal of Entomology, 27, 450–455.Google Scholar
  45. Rajagopalan, P., & Naganathan, T. G. (1977b). Studies on nematode parasites of banana. Tamil Nadu Agricultural University Annual Report, 6, 131.Google Scholar
  46. Ramakrishnan, T. S. (1954). Common diseases of citrus in Madras. Madras: Government of Madras Publication.Google Scholar
  47. Ramakrishnan, T. S., & Damodaran, S. (1956). Observations on the wilt disease of the banana. Proceedings of the Indian Academy of Science, 43, 213–222.Google Scholar
  48. Rao, M. S. (2005). Management of Meloidogyne javanica on acid lime nursery seedlings by using formulations of Pochonia chlamydosporia and Paecilomyces lilacinus. Nematologia Mediterranea, 33, 145–148.Google Scholar
  49. Rao, M. S. (2007a). Papaya seedlings colonized by the bio-agents Trichoderma harzianum and Pseudomonas fluorescens to control root-knot nematodes. Nematologia Mediterranea, 35, 199–203.Google Scholar
  50. Rao, M. S., & Naik, D. (2003). Effect of Trichoderma harzianum and Paecilomyces lilacinus on Meloidogyne incognita on papaya (Carica papaya L.) nursery seedlings. Pest Managment in Horticultural Ecosystems, 9, 155–160.Google Scholar
  51. Rao, Y. P., & Hingorani, M. K. (1963). Survival of Xanthomonas citri (Hasse) Dowson in leaves and soil. Indian Phytopatholgy, 16, 362–364.Google Scholar
  52. Ravi Kumar, M. R., Somasekhara, Y. M., Jahagirdar, S., & Ryagi, Y. H. (2001). Field evaluation of antibiotics against citrus canker caused by Xanthomonas axonopodis pv. citri. Agricultural Science Digest, 21, 253–255.Google Scholar
  53. Ravi, K., Nanje Gowda, D. N., & Reddy, P. P. (2001). Integrated management of disease complex in banana involving borrowing nematode and Panama wilt—an ecofriendly approach. In A. Verghese & P. P. Reddy (Eds.), IPM in horticultural crops: Emerging trends in the new millennium (p. 154). Bangalore: Association for Advancement of Pest Management in Horticultural Ecosystems.Google Scholar
  54. Reddy, P. P., & Nagesh, M. (2000). Integrated management of the citrus nematode using bacterial (Pasteuria penetrans) and fungal (Paecilomyces lilacinus) biocontrol agents. Proceedings of international symptoms on citriculture, Nagpur, pp. 825–829.Google Scholar
  55. Reddy, P. P., Khan, R. M., & Rao, M. S. (1991). Integrated management of the citrus nematode, Tylenchulus semipenetrans using oil cakes and Paecilomyces lilacinus. Afro-Asian Journal of Nematolology, 1, 221–222.Google Scholar
  56. Reddy, P. P., Khan, R. M., & Rao, M.S. (1993). Integrated management of the citrus nematode, Tylenchulus semipenetrans using neem cake and the parasitic fungus, Paecilomyces lilacinus. Proceedings of the world neem conference, Bangalore, pp. 647–650.Google Scholar
  57. Reddy, P. P., Rao, M. S., Mohandas, S., & Nagesh, M. (1995). Integrated management of the citrus nematode, Tylenchulus semipenetrans Cobb using VA mycorrhiza, Glomus fasciculatum (Thaxt.) Gerd & Trappe and oil cakes. Pest Management in Horticultural Ecosystems, 1, 37–41.Google Scholar
  58. Reddy, P. P., Rao, M.S., & Nagesh, M. (1996a). Management of the citrus nematode, Tylenchulus semipenetrans by integration of Trichoderma harzianum with oil cakes. Nematolologia Mediterranea, 24, 265–267.Google Scholar
  59. Reddy, P. P., Rao, M. S., & Nagesh, M. (1996b). Management of the citrus nematode on acid lime by integration of parasitic fungi and oil cakes. Pest Management in Horticultural Ecosystems 2, 15–18.Google Scholar
  60. Reddy, P. P., Rao, M. S., & Nagesh, M. (1996c). Integrated management of the citrus nematode, Tylenchulus semipenetrans using pesticides and parasitic fungus, Paecilomyces lilacinus. Pest Management in Horticultural Ecosystems, 2, 61–63.Google Scholar
  61. Reddy, P. P., Rao, M. S., & Nagesh, M. (1996d). Crop loss estimation in banana due to the burrowing nematode, Radopholus similis. Pest Management in Horticultural Ecosystems, 2, 85–86.Google Scholar
  62. Reddy, P. P., Nagesh, M., Rao, M. S., & Rama, N. (2000). Management of Tylenchulus semipenetrans by integration of Pseudomonas fluorescens with oil cakes. Proceedings of the international symposium on citriculture, Nagpur, pp. 830–833.Google Scholar
  63. Reddy, P. P., Rao, M. S., & Nagesh, M. (2002). Integrated management of burrowing nematode (Radopholus similis) using endomycorrhiza (Glomus mosseae) and oil cakes. In H. P. Singh & K. L. Chadha (Eds.), Banana (pp. 344–348). Trichy: Association of the Improvement in Production and Utilisation of Banana.Google Scholar
  64. Rishbeth, J. (1960). Factors affecting the incidence of banana wilt (‘Panama disease’). Empire Journal of Experimental Agriculture, 28, 109–113.Google Scholar
  65. Satish. (1996). Management of Panama disease of banana caused by Fusarium oxysporum f. sp. cubense by using microorganisms. M.Sc. thesis, University of Agricultural Science, Bangalore, 98 pages.Google Scholar
  66. Sawant, I. S., & Sawant, S. D. (1989). Coffee fruit skin and cherry husk as substrates for mass multiplication of Trichoderma harzianum an antagonist of citrus Phytophthora Indian Phytopathology, 42, 336.Google Scholar
  67. Siddiqi, M. R. (1961). Occurrence of the citrus nematode, Tylenchulus semipenetrans Cobb. 1913 and the reniform nematode, Rotylenchulus reniformis in India. Proceedings of 48th of Indian Science Congress, 3, 504.Google Scholar
  68. Singh, S. P. (1995). Technology for production of natural enemies, (221 pages). Technical Bulletin No. 4, Project Directotate of Biological Control, Bangalore.Google Scholar
  69. Swarup, G., & Seshadri, A. R. (1974). Nematology in India—problems and progress. In S. P. Raychaudhuri & J. P. Verma (Eds.), Current trends in plant pathology (pp. 303–311). Lucknow: Department of Botany, University of Lucknow.Google Scholar
  70. Taylor, A. L., Sasser, J. N., & Nelson, L. A. (1982). Relationship of climate and soil characteristics to geographical distribution of meloidogyne species in agricultural soil. Raleigh: Co-operative Publication, Department of Plant Pathology, North Carolina State University & U. S. Agency for International Development, 65 pages.Google Scholar
  71. Thirumala Rao, V. (1956). Stray notes on some pest outbreaks of South India. Indian Journal Entomology, 18, 123–126.Google Scholar
  72. Vadivelu, R. S., Rajendran, G., Naganathan, T. G., & Jayaraj, S. (1987). Studies on the nematode pests of banana and their management—A review. Third group discussion on the nematological problems of plantation crops, Sugarcane Breeding Institute, Coimbatore, pp. 32–33.Google Scholar
  73. Vidya, K., & Reddy, B. M. R. (1998). Integrated management of Radopholus similis infecting banana using plant product, nematicide and biocontrol agents. Mysore Journal of Agricultural Science, 32, 186–190.Google Scholar
  74. Walode, N. B., Sinha, A. K., & Neog, P. P. (2008). Biological control of citrus nematode, Tylenchulus semipenetrans on Citrus jambhiri. Indian Journal of Nematology, 38, 244–245.Google Scholar
  75. Whitehead, A. G. (1968). Taxonomy of Meloidogyne (Nematodea: Heteroderidae) with descriptions of four new species. Transactions of the Zoology Society of London, 31, 263–401.CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Former DirectorIndian Institute of Horticultural ResearchBangaloreIndia

Personalised recommendations