Plantation Crops

  • P. Parvatha Reddy


Economic importance and losses, symptoms/damage, pre-disposing factors, epidemiology, survival and spread, and biointensive integrated management of insect and mite pests, fungal, bacterial, viral/mycoplasma diseases, nematode pests, and disease complexes of plantation crops (coffee, tea, coconut, areca nut, betel vine, cocoa, and rubber) using physical methods, cultural methods, botanical pesticides, chemical pesticides, bioagents, arbuscular mycorrhizal fungi, and host resistance are discussed.


Neem Cake Nematode Pest Radopholus Similis Oryctes Rhinoceros Betel Vine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baby, U. I., & Chandramouli (1996). Biological antagonism of Trichoderma and Gliocla-dium spp. against certain primary rot pathogens of tea. J. Plantn. Crops, 24, 249–255.Google Scholar
  2. Balasuriya, A., & Kalaichelvan, J. (2000). Is there potential in natural tea phylloplane microorganisms in the control of blister blight leaf disease of tea (Camellia sinensis)? The Planter, Kaula Lumpur, 76, 409–417.Google Scholar
  3. Barber, C. A. (1901). Department Land Records and Agriculture. Madras Agri. Branch 2, Bull. No. 45, pp. 227–234.Google Scholar
  4. Chakraborty, B. N., Chakraborty, U., Das, G., & Das, S. K. (1994). Phyllosphere micro-flora of tea and their interaction with Glomerella cingulata the causal agent of brown blight disease. Tea, 15, 27–34.Google Scholar
  5. Hashim, I. (1990). Possible integration of Trichoderma with fungicides for the control of white root disease of rubber. Root diseases of H. brasiliensis. Proceedings of IRRDB Symposium, Kunning, Chiang, pp. 1–8.Google Scholar
  6. Jonathan, E. I., Nagalakshmi, S., & Padmanabhan, D. (1990). Estimation of yield losses in betel vine due to Meloidogyne incognita. International Nematology Network Newsletter, 7(4), 26.Google Scholar
  7. Jonathan, E. I., Umamaheswari, R., & Bommaraju, P. (2006). Bioefficacy of native plant growth promoting rhizobacteria against Meloidogyne incognita and Phytophthora capsici. Indian Journal of Nematology, 36, 230–233.Google Scholar
  8. Kalita, S., & Bora, B. C. (2006). Effect of nematicides and organic amendments in the management of Meloidogyne incognita in tea nursery. Indian Journal of Nematology, 36, 148–149.Google Scholar
  9. Koshy, P. K. (1986). The burrowing nematode, Radopholus similis (Cobb, 1893) Thorne, 1949. In G. Swarup & D. R. Dasgupta (Eds.), Plant Parasitic Nematodes of India-Problems and Progress (pp. 223–248). New Delhi: Indian Agri. Res. Inst.Google Scholar
  10. Koshy, P. K., & Geetha, S. M. (1992). Nematode pests of palms and cocoa. In D. S. Bhatti & R. K. Walia (Eds.), Nematode Pests of Crops (pp. 214–227). Delhi: CBS Publishers & Distributors.Google Scholar
  11. Koshy, P. K., & Sosamma, V. K. (1978). Studies on the population fluctuations of Radopholus similis in coconut and areca nut roots. Indian Phytopathology, 31, 180–185.Google Scholar
  12. Koshy, P. K., & Sosamma, V. K. (1987). Pathogenicity of Radopholus similis on coconut (Cocos nucifera L.) seedlings under greenhouse and field conditions. Indian Journal of Nematology, 17, 108–118.Google Scholar
  13. Koshy, P. K., Sundararaju, P., & Sosamma, V. K. (1978). Occurrence and distribution of Radopholus similis (Cobb, 1893) Thorne, 1949 in South India. Indian Journal of Nematology, 8, 49–58.Google Scholar
  14. Maiti, D., & Sen, C. (1998). Integrated biological control of Sclerotium rolfsii with nitro-genous fertilizers and Trichoderma harzianum. Indian Journal of Agricultural Sciences, 55, 464–468.Google Scholar
  15. Kannan, N., Devasikhamani, S., Bhat, S., Naidu, R., & Sreenivasan, C. S. (1997). Biological control of root disease in coffee (Abstr.). International Conference on Integrated Plant Disease Management for Sustainable Agricuture. Indian Phytopathology Society, Indian Agri. Res. Inst., New Delhi, p. 210.Google Scholar
  16. Ponmurugan, P., & Baby, U. I. (2005). Management of Phomopsis canker of tea with fungicides and biocontrol agents. Journal of Plantation Crops, 33, 175–178.Google Scholar
  17. Ramanujam, B., Nambiar, K. K. N., & Iyer, R. (1997). Management of stem bleeding disease of coconut with fungicides and a biocontrol agent. Journal of Plantation Crops, 25, 175–179.Google Scholar
  18. Saikia, B. (1992). Pathogenicity, crop loss assessment and biological control of Meloidogyne incognita (Kofoid and White, 1919) Chitwood, 1949 on Betel Vine (Piper betle L.). M. Sc. (Agri.) thesis, Assam Agri. Univ., Jorhat.Google Scholar
  19. Singh, A., Mehta, S., Singh, M. H. B., & Nautiyal, C. S. (2003). Biocontrol of collar rot disease of betelvine (Piper betle L.) caused by Sclerotium rolfsii by using rhizosphere-competent Pseudomonas fluorescens NBRI-N6 and P. fluorescens NBRI-N. Current Microbiology. 47, 153–158.
  20. Sudha, S., & Sundararaju, P. (1998). Effect of neem oil cake and nematicide for the control of burrowing nematode, Radopholus similis in the areca nut based cropping system. In U. K. Mehta (Ed.), Nematology—Challenges & Opportunities in 21st Century (pp. 251–257). Coimbatore: Sugarcane Breeding Inst.Google Scholar
  21. Talam, D. K., & Otieno, W. (2002). Temperature relations in Armillaria spp. associated with root rot of tea in Kenya: Implications in disease management by soil solarization. Tea, 23(1), 22–28.Google Scholar
  22. Weischer, B. (1967). Report to the Government of India on Plant Parasitic Nematodes. PL 24/52 Report No. TA 2332, FAO, Rome, 15 pp.Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Former DirectorIndian Institute of Horticultural ResearchBangaloreIndia

Personalised recommendations