Nematode Disease Complexes

  • N. G. Ravichandra


In the soil environment, plants are constantly exposed to a range of microorganisms which are likely to influence one another, as they occupy the same habitat. Phytonematodes are often considered as pathogens in their own right and are capable of producing a single, recognizable disease. Apart from this, they also get associated with other soil pathogens that result in the complex diseases, which are more devastating and cause huge crop losses. Phytonematodes are major predisposing factors for other potential soil pathogens, which deserve more attention. In the case of soilborne pathogens, further opportunities exist for interactions with other microorganisms occupying the same ecological niche. The significant role of nematodes in the development of diseases caused by soilborne pathogens has been demonstrated in many crops throughout the world. In many cases, such nematode–fungus disease complexes involve root-knot nematodes (Meloidogyne spp.), although several other endoparasitic (Globodera spp., Heterodera spp., Rotylenchulus spp., Pratylenchus spp.) and ectoparasitic (Xiphinema spp., Longidorus spp.) nematodes have been associated with diseases caused by soilborne fungal pathogens (Back et al. 2002).


Fusarium Wilt Nematode Species Mycorrhizal Plant Nematode Population Rhizoctonia Solani 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abawi, G. S., & Barker, K. R. (1984). Effects of cultivar, soil temperature and population levels of Meloidogyne incognita on root necrosis and Fusarium wilt of tomatoes. Phytopathology, 74, 433–438.CrossRefGoogle Scholar
  2. Abawi, G. S., & Chen, J. (1998). Concomitant pathogen and pest interactions. In K. R. Barker, G. A. Pederson, & G. L. Windham (Eds.), Plant and nematode interactions (pp. 135–158). Wisconsin: USA.Google Scholar
  3. Agu, C. M., & Ogbuji, R. O. (2000). Effects of Meloidogyne javanica and Rhizoctonia solani alone and in combination on soybean in ferrallitic soils of eastern Nigeria. Tropenlandwirt, 101, 91–97.Google Scholar
  4. Back, M. A., Haydock, P. J., & Jenkinson, P. (2002). Disease complexes involving plant parasitic nematodes and soil borne pathogens. Plant Pathology, 51, 683–697.CrossRefGoogle Scholar
  5. Bergeson, B. G. (1972). Concepts of nematode-fungus associations in plant disease complexes: A review. Experimental Parasitology, 32, 301–314.PubMedCrossRefGoogle Scholar
  6. Bernard, E. C. (1992). Soil nematode biodiversity. Biology and Fertility of Soils, 14, 99–103.CrossRefGoogle Scholar
  7. Bird, D. M., & Koltai, H. (2000). Plant parasitic nematodes: Habitats, hormones, and horizontally-acquired genes. Journal of Plant Growth Regulation, 19, 183–194.PubMedGoogle Scholar
  8. Bird, D. M., Opperman, C. H., & Davies, K. G. (2003). Interactions between bacteria and plant-parasitic nematodes: Now and then. International Journal for Parasitology, 33, 1269–1276.PubMedCrossRefGoogle Scholar
  9. Bleuler-Martinez, S., Butschi, A., Garbani, M., Walti, M. A., Wohlschlager, T., Potthoff, E., Sabotic, J., Pohleven, J., Luthy, P., Hengartner, M. O., Aebi, M., & Kunzler, M. (2011). A lectin-mediated resistance of higher fungi against predators and parasites. Molecular Ecology, 20, 3056–3070.PubMedCrossRefGoogle Scholar
  10. Bohlool, B. B., & Schmidt, E. L. (1974). Lectins: A possible basis for specificity in the rhizobium-legume root nodule symbiosis. Science, 185, 269–271.PubMedCrossRefGoogle Scholar
  11. Botseas, D. D., & Rowe, R. C. (1994). Development of potato early dying in response to infection by two pathotypes of Verticillium dahliae and coinfection by Pratylenchus penetrans. Phytopathology, 84, 275–282.CrossRefGoogle Scholar
  12. Bouwman, L. A., Hoenderboom, G. H. J., Van Der Maas, K. J., & De Ruiter, P. C. (1996). Effects of alters plant cell development. Molecular Plant Microbe Interactions, 16, 123–131.Google Scholar
  13. Bowers, J. H., Nameth, S. T., Riedel, R. M., & Rowe, R. C. (1996). Infection and colonisation of potato roots by Verticillium dahliae as affected by Pratylenchus penetrans and P. crenatus. Phytopathology, 86, 614–621.CrossRefGoogle Scholar
  14. Brown, D. J. F., & Trudgill, D. L. (1989). Evolution of transmission of nepoviruses by longidorid nematodes. Aspects of Applied Biology, 22, 73–81.Google Scholar
  15. Brown, J. F., & Weisher, B., (1998). Specificity, exclusivity and complementarity in the transmission of plant viruses by plant parasitic nematodes: An annotated terminology (1). CABI. 282 p.Google Scholar
  16. Chand, T., Logan, C., & Fraser, T. W. (1985). Modes of penetration of Rhizoctonia solani in potato sprouts. Annals of Biology, 1, 1–6.Google Scholar
  17. Desaeger, J. R., Rao, M. R., & Bridge, J. (2004). Nematodes and other soilborne pathogens. Fundamental of Applied Nematology, 21, 1–11.Google Scholar
  18. Diedhiou, P. M., Hallmann, J., Oerke, E. C., & Dehne, H. W. (2003). Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of Fusarium wilt development in flue-cured tobacco. Phytopathology, 57, 282–285.Google Scholar
  19. Doncaster, C. C., & Seymour, M. K. (1973). Exploration and selection of penetration site by tylenchida. Nematologica, 19, 137–145.CrossRefGoogle Scholar
  20. Duponnois, R., Founoune, H., Ba, A., Plenchette, C., EL Jaafari, S., & Neyra, M. (2000). Meloidogyne javanica. Annals of Forest Science, 57, 345–350.CrossRefGoogle Scholar
  21. El-Bahrawy, S. A., & Salem, F. M. (1989). Interaction between Rhizobium leguminosarum and Meloidogyne javanica nematode in broad bean under nematicide application. Zentralblatt für Mikrobiologie, 144, 279–281.Google Scholar
  22. Evans, K., & Haydock, P. P. J. (1993). Interactions of nematodes with root-rot fungi. In M. Wajid Khan (Ed.), Nematode interactions (pp. 104–133). London: Chapman & Hall.CrossRefGoogle Scholar
  23. Faulkner, L. R., & Skotland, C. B. (1965). Interactions of Verticillium dahliae and Pratylenchus minyus in Verticillium wilt of peppermint. Phytopathology, 55, 583–586.Google Scholar
  24. Fawcett, H. S. (1931). The importance of investigations on the effects of known mixtures of organisms. Phytopathology, 21, 545–550.Google Scholar
  25. Francl, L. J., & Dropkin, V. H. (1985). Glomus fasciculatum, a weak pathogen of Heterodera glycines. Journal of Nematology, 17, 470–475.PubMedCentralPubMedGoogle Scholar
  26. Good, J. M. (1968). Relation of plant parasitic nematodes to management practices. In G. C. Smart & V. G. Perry (Eds.), Tropical nematology (pp. 113–138). Gainesville: University of Florida Press.Google Scholar
  27. Gottlieb, D. (1976). Production and role of antibiotics in soil. The Journal of Antibiotics, 29, 987–1000.PubMedCrossRefGoogle Scholar
  28. Grandison, O. S., & Cooper, K. M. (1986). Interaction of vesicular arbuscular mycorrhizal fungi and cultivars of alfalfa susceptible and resistant to Meloidogyne hapla. Journal of Nematology, 18, 141–149.PubMedCentralPubMedGoogle Scholar
  29. Griffin, G. D., Gray, F. A., Johnson, D. A., & Crebs, D. L. (1993). Pathological relationship of Meloidogyne hapla and Phytophthora megasperma f.sp. medicaginis in Medicago sativa L. – Importance of inoculation timing, soil texture, and temperature. Nematropica, 23, 183–193.Google Scholar
  30. Grunewald, W., Giel, V., Noorden, G. V., Beeckman, T., Gheysen, G., & Mathesius, U. (2009). Manipulation of auxin transport in plant roots during Rhizobium symbiosis and nematode parasitism. Plant Cell, 21, 2553–2562.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Hamel, C., & Strulla, D. G. (2006). Arbuscular mycorrhizal fungi in field crop production: Potential and new direction. Canadian Journal of Plant Science, 86, 941–950.CrossRefGoogle Scholar
  32. Harley, J. L., & Smith, S. E. (1983). Mycorrhizal symbiosis. London: Academic.Google Scholar
  33. Harrison, B. D., Mowat, P., & Taylor, C. E. (1961). Transmission of a strain of tomato black ring virus by Longidorus elongatus (Nematoda). Virology, 14, 480–485.PubMedCrossRefGoogle Scholar
  34. Hasan, A. (1985). Breaking the resistance in chilli to root-knot nematodes by fungal pathogens. Nematologica, 31, 210–217.CrossRefGoogle Scholar
  35. Hayman, D. S. (1982). The physiology of vesicular arbuscular endomycorrhizal symbiosis. Canadian Journal of Botany, 61, 944–963.CrossRefGoogle Scholar
  36. Heald, C. M., Burton, B. C., & Davis, R. M. (1989). Influemce of Glomus intraradices and soil phosphorus on Meloidogyne incognita infecting Cucumis melo. Journal of Nematology, 21, 69–73.PubMedCentralPubMedGoogle Scholar
  37. Heath, W. L., Haydock, P. P. J., Wilcox, A., & Evans, K. (2000). The potential use of spectral reflectance from the potato crop for remote sensing of infection by potato cyst nematodes. Aspects of Applied Biology, 60, 185–188.Google Scholar
  38. Hertz, N. B., & Mattiasson, B. (1979). Action of a nematode-trapping fungus shows lectin-mediated host–microorganism interaction. Nature, 281, 477–479.CrossRefGoogle Scholar
  39. Hewitt, W. B., Raski, D. J., & Goheen, A. C. (1958). Nematode vector of soil-borne fanleaf virus of grapevines. Phytopathology, 48, 586–595.Google Scholar
  40. Hoof, V. (1975). The effect of temperature on the transmission of tobacco rattle virus in tulip by Trichodorus using the bait-leaf method. Nematologica, 21, 104–108.CrossRefGoogle Scholar
  41. Horiuchi, J., Prithiviraj, B., Bais, H. P., Kimball, B. A., & Vivanco, J. M. (2005). Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta, 222(5), 848–857.PubMedCrossRefGoogle Scholar
  42. Huang, J. (1987). Interactions of nematodes with rhizobia. In J. A. Veech & D. W. Dickson (Eds.), Vistas on nematology (pp. 301–306; 509 pp). Hyattsville: Society of Nematologists Inc.Google Scholar
  43. Hussey, R. S., & Roncadori, R. W. (1982). Vesicular-arbuscular mycorrhizae may limit nematodes activity and improve plant growth. Plant Disease, 66, 9–14.CrossRefGoogle Scholar
  44. Ikonen, E. K. (2001). Population growth of two aphelenchid nematodes with six different fungi as a food source. Nematology, 3, 9–15.CrossRefGoogle Scholar
  45. Ingham, R. E., & Coleman, D. C. (1983). Effect of ectoparasitic nematodes on bacterial growth in gnotobiotic soil. Oikos, 41, 227–232.CrossRefGoogle Scholar
  46. Jalaluddin, M., Hajra, N. B., Firoja, K., & Shahina, F. (2008). Effect of Glomus callosum, Meloidogyne incognita and soil moisture on growth and yield of sunflower. Pakistan Journal of Botany, 40, 391–396.Google Scholar
  47. Jones, M. G. K. (1981). Host cell responses to endoparasitic attack: Structure and function of giant cells and syncytia. Annals of Applied Biology, 97, 353–372.CrossRefGoogle Scholar
  48. Kantharaju, V., Krishnappa, K., Ravichandra, N. G., & Karuna, K. (2005). Management of root-knot nematode, Meloidogyne incognita on tomato by using indigenous isolates of AM fungus, Glomus fasciculatum. Indian Journal of Nematology, 35, 32–36.Google Scholar
  49. Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 38, 423–441.PubMedCrossRefGoogle Scholar
  50. Khan, M. W. (1993). Nematode interactions (326 pp). London: Chapman & Hall.Google Scholar
  51. Khan, M. R. (2008). Plant nematodes: Methodology, morphology, systematics, biology and ecology (360 pp). New Delhi: Oxford & IBH Publishing Co. Pvt. Ltd.Google Scholar
  52. Lamberti, F., & Roca, F. (1987). Present status of nematodes as vectors of plant viruses. In J. A. Veech & D. W. Dickson (Eds.), Vistas on nematology (pp. 321–328; 509 pp). Hyattsville: Society of Nematologists Inc.Google Scholar
  53. Legorboru, F. (1993). Immunogenic structure of IObacco raule virus partides and ilS relation to veCLOr transmission. Ph.D. thesis, University of Dundee, Scotland, 385 p.Google Scholar
  54. Lockwood, J. L. (1988). Evolution of concepts associated with soil borne plant pathogens. Annual Review of Phytopathology, 26, 93–121.CrossRefGoogle Scholar
  55. Marley, P. S., & Hillocks, R. J. (1994). Effect of root-knot nematodes on cajanol accumulation in the vascular tissues of pigeonpea after stem inoculation with Fusarium udum. Plant Pathology, 43, 172–176.CrossRefGoogle Scholar
  56. McCabe, P., Gallagher, M. P., & Deacon, J. W. (1999). Microscopic observation of perfect hyphal fusion in Rhizoctonia solani. Mycological Research, 103, 487–490.CrossRefGoogle Scholar
  57. Miller, P. M. (1975). Effect of Pratylenchus penetrans on subsequent growth of tomato plants. Plant Disease Reporter, 59, 866–867.Google Scholar
  58. Nordmeyer, D., & Sikora, R. A. (1983). Studies on the interaction between Heterodera daverti, Fusarium avenaceum and F. oxysporum on Trifolium subterraneum. Revue de Nematologie, 6, 193–198.Google Scholar
  59. Parvatha Reddy, P. (2008). Integrated nematode management in horticultural crops (300 pp). Jodhpur: Scientific Publishers (India).Google Scholar
  60. Polychronopoulos, A. G., Houston, B. R., & Lownsbery, B. F. (1969). Penetration and development of Rhizoctonia solani in sugar beet seedlings infected with Heterodera schachtii. Phytopathology, 59, 482–485.Google Scholar
  61. Powell, N. T. (1971). Interactions between nematodes and fungi in disease complexes. Annual Review of Phytopathology, 9, 253–274.CrossRefGoogle Scholar
  62. Powell, N. T., Melendez, P. L., & Batten, C. K. (1971). Disease complexes in tobacco involving Meloidogyne incognita and certain soil borne fungi. Phytopathology, 61, 1332–1337.CrossRefGoogle Scholar
  63. Ramsey, G. B. (1917). A form of potato disease caused by Rhizoctonia. Journal of Agricultural Research, 9, 421–426.Google Scholar
  64. Ravichandra, N. G. (2010). Methods and techniques in plant nematology (595 pp). New Delhi: Prentice Hall of India Publications.Google Scholar
  65. Richards, B. N. (1976). Introduction to the soil ecosystem. London: Longman.Google Scholar
  66. Riedel, R. M., Rowe, R. C., & Martin, M. J. (1985). Differential interactions of Pratylenchus crenatus, Pratylenchus penetrans and Pratylenchus scribneri with Verticillium dahliae in potato early dying disease. Phytopathology, 75, 419–422.CrossRefGoogle Scholar
  67. Riley, I. T. (1994). Dilophospora alopecuri and decline in annual ryegrass toxicity in Western Australia. Australian Journal of Agricultural Research, 45, 841–850.CrossRefGoogle Scholar
  68. Roberts, P. A., & McKenry, M. V. (1985). Phytonematology study guide (Publication 4045). Oakland: University of California, Division of Agriculture and Natural Resources.Google Scholar
  69. Schellenberger, P., Sauter, C., Lorber, B., Bron, P., Trapani, S., Bergdoll, M., Marmonier, A., Schmitt-Keichinger, C., Lemaire, O., Demangeat, G., & Ritzenthaler, C. (2011). Structural insights into viral determinants of nematode mediated Grapevine fanleaf virus transmission. PLoS Pathogens, 7(5), e1002034.PubMedCentralPubMedCrossRefGoogle Scholar
  70. Shreenivasa, K. R., Krishnappa, K., & Ravichandra, N. G. (2007). Interaction effects of Arbuscular mycorrhizal fungus, Glomus fasciculatum and root-knot nematode, Meloidogyne incognita on growth and phosphorus uptake of tomato. Karnataka Journal of Agricultural Sciences, 20, 57–61.Google Scholar
  71. Siddiqui, Z. A., Nesha, R., Singh, N., & Alam, S. (2012). Interactions of plant-parasitic nematodes and plant-pathogenic bacteria. Bacteria in Agrobiology: Plant Probiotics, 6, 251–267.CrossRefGoogle Scholar
  72. Sticher, L., MauchMani, B., & Metraux, J. P. (1997). Systemic acquired resistance. Annual Review of Phytopathology, 35, 235–270.PubMedCrossRefGoogle Scholar
  73. Stirling, G. R. (1991). Biological control of plant parasitic nematodes. CAB International: UK.Google Scholar
  74. Subhashini, D. V., & Ramakrishnan, S. (2013). Effect of VA Mycorrhiza on root disease (Pythium aphanidermatum and Meloidogyne incognita) in tobacco. Indian Journal of Nematology, 43, 13–16.Google Scholar
  75. Sugawara, K., Kobayashi, K., & Ogoshi, A. (1997). Influence of the soybean cyst nematode (Heterodera glycines) on the incidence of brown stem rot in soybean and adzuki bean. Soil Biology and Biochemistry, 29, 1491–1498.CrossRefGoogle Scholar
  76. Taheri, A., Hollamby, G. J., Vanstone, V. A., & Neate, S. M. (1994). Interaction between root-lesion nematode, Pratylenchus neglectus (Rensch 1924) Chitwood and Oteifa 1952, and root rotting fungi of wheat. New Zealand Journal of Crop and Horticultural Science, 22, 181–185.CrossRefGoogle Scholar
  77. Taylor, C. E. (1990). Nematode interactions with other pathogens. Annals of Applied Biology, 116, 405–416.CrossRefGoogle Scholar
  78. Taylor, C. E., & Brown, D. J. F. (1997). Nematode vectors of plant viruses. Wallingford: CABI. VIII + 286 p.Google Scholar
  79. Uma Maheswari, T., Sharma, S. B., Reddy, D. D. R., & Haware, M. P. (1997). Interaction of Fusarium oxysporum f.sp. ciceri and Meloidogyne javanica on Cicer arietinum. Journal of Nematology, 29, 117–126.PubMedCentralGoogle Scholar
  80. Van Gundy, S. D., Kirkpatrick, J. D., & Golden, J. (1977). The nature and role of metabolic leakage from root-knot nematode galls and infection by Rhizoctonia solani. Journal of Nematology, 9, 113–121.PubMedCentralPubMedGoogle Scholar
  81. Villenave, C., & Duponnois, R. (2002). Interactions between ectomycorrhizal fungi, plant- parasitic and free- living nematodes and their effects on seedlings of the hardwood, Afzelia africana Sm. Pedobiologia, 46, 176–187.CrossRefGoogle Scholar
  82. Vos, C., Van Den Broucke, D., Lombi, F. M., De Waele, D., & Elsen, A. (2012). Mycorrhiza-induced resistance in banana acts on nematode host location and penetration. Soil Biology and Biochemistry, 47, 60–66.CrossRefGoogle Scholar
  83. Walker, N. R., Kirkpatrick, T. L., & Rothrock, C. S. (2000). Influence of Meloidogyne incognita and Thielaviopsis basicola populations on early-season disease development and cotton growth. Plant Disease, 84, 449–453.CrossRefGoogle Scholar
  84. Wallace, H. R. (1973). Nematode ecology and plant disease. Oxford: Alden Press.Google Scholar
  85. Wallace, H. R. (1983). Interactions between nematodes and other factors on plants. Journal of Nematology, 15, 221–227.PubMedCentralPubMedGoogle Scholar
  86. Wang, K. H., & McSorley, R. (2005). Effects of soil ecosystem management on nematode pests, nutrient cycling, and plant health. APS net features. Gainesville: University of Florida.Google Scholar
  87. Weinhold, A. R., Dodman, R. L., & Bowman, T. (1972). Influence of exogenous nitrogen on virulence of Rhizoctonia solani. Phytopathology, 62, 278–281.CrossRefGoogle Scholar
  88. Wharton, D. A., & Murray, D. S. (1990). Carbohydrate/lectin interactions between the nematophagous fungus, Arthrobotrys oligospora, and the infective juveniles of Trichostrongylus colubriformis (Nematoda). Parasitology, 101, 101–106.PubMedCrossRefGoogle Scholar
  89. Williamson, V. M., & Gleason, C. A. (2003). Plant-nematode interactions. Current Opinion in Plant Biology, 6, 327–333.PubMedCrossRefGoogle Scholar
  90. Wimmerova, M., Mitcheli, E., Sanchez, J.-F., Gautier, C., & Imberty, A. (2003). Crystal structure of fungal lectin – Six-bladed β-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin. Journal of Biological Chemistry, 278, 27059–27067.PubMedCrossRefGoogle Scholar
  91. Wyss, U., & Zunke, U. (1992). Observations of the behaviour of second stage juveniles of Heterodera schachtii inside host roots. Revue de Nematologie, 9, 153–165.Google Scholar
  92. Yeates, G. W. (2003). Nematodes as soil indicators: Functional and biodiversity aspects. Biology and Fertility of Soils, 37, 199–210.Google Scholar
  93. Zambolin, L., & Oliveira, A. A. R. (1986). Interacao entre Glomus etunicatum and Meloidogyne javanica em feijao (Phaseolus vulgaris L.). Fitopathologia Brasileira, 11, 216–217.Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • N. G. Ravichandra
    • 1
  1. 1.AICRP (Nematodes) Department of Plant PathologyUniversity of Agricultural SciencesBangaloreIndia

Personalised recommendations