Phylogenetic and Evolutionary Concepts in Nematodes

  • N. G. Ravichandra


Keeping the medical, ecological, and economical importance of nematode phylum in mind, it is remarkable to see that nematode systematics is far from established. It has a long history of constant revision, and there may be as many classifications as there are nematode taxonomists. Ferris and Ferris (1987) anticipated about the growing sense of excitement pervading systematics as new techniques make it possible a depth of understanding of phylogenetic relationships and affinities never before thought possible. They further stated that Darwin’s “genealogical taxonomy,” based on the concepts of descent with modification, is linked directly with two approaches to phylogenetic inference, viz., phenetics and cladistics. In both of these, patterns of descent take precedence over processes, and in classifications based on these procedures, “grades” and “gaps” beloved by the evolutionary systematics are ignored and categories are usually of lesser importance (Dupuis 1884). The phenetic approach deals with “natural classification” based on overall similarity and the belief that the more characters a classification is based on, the more reliable it will be.


Long Terminal Repeat Nematode Species Intron Loss Long Terminal Repeat Retrotransposon Dosage Compensation Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aboobaker, A., & Blaxter, M. (2003). Hox gene evolution in nematodes: Novelty conserved. Current Opinion in Genetics and Development, 13, 593–598.PubMedCrossRefGoogle Scholar
  2. Adams, B. J. (1998). Species concepts and the evolutionary paradigm in modern nematology. Journal of Nematology, 30, 1–21.PubMedCentralPubMedGoogle Scholar
  3. Aguinaldo, A. M. A., Turbeville, J. M., Linford, L. S., Rivera, M. C., Garey, J. R., Raff, R. A., & Lake, J. A. (1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387, 489–493.PubMedCrossRefGoogle Scholar
  4. Archetti, M. (2004). Recombination and loss of complementation: A more than two-fold cost for parthenogenesis. Journal of Evolutionary Biology, 17, 1084–1097.PubMedCrossRefGoogle Scholar
  5. Averof, M., & Patel, N. H. (1997). Crustacean appendage evolution associated with changes in Hox gene expression. Nature, 388, 682–686.PubMedCrossRefGoogle Scholar
  6. Balavoine, G., de Rosa, R., & Adoutte, A. (2002). Hox clusters and bilaterian phylogeny. Molecular Phylogenetics and Evolution, 24, 366–373.PubMedCrossRefGoogle Scholar
  7. Baldwin, J. G., Nadler, S. A., & Adms, B. J. (2004). Evolution of plant parasitism among nematodes. Annual Review of Phytopathology, 42, 83–105.PubMedCrossRefGoogle Scholar
  8. Blair, J. E., Ikeo, K., Gojobori, T., & Blair, S. H. (2002). The evolutionary position of nematodes. BMC Evolutionary Biology, 2, 7.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Blaxter, M. (2003). Comparative genomics: Two worms are better than one. Nature, 426, 395–396.PubMedCrossRefGoogle Scholar
  10. Blaxter, M. L., De Ley, P., & Garey, J. R. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature, 392, 71–75.PubMedCrossRefGoogle Scholar
  11. Blaxter, M., Dorris, M., & De Ley, P. (2000). Patterns and processes in the evolution of animal parasitic nematodes. Nematology, 2, 43–55.CrossRefGoogle Scholar
  12. Blumenthal, T. (2005). Trans-splicing and operons. In The C.elegans Research Community (Ed.), WormBook. doi: 10.1895/wormbook.1.5.1
  13. Brown, D. J. F. (1985). The effect, after 4 years, of a change in biotope on the morphometrics of populations of Xiphinema diversicaudatum (Nematoda: Dorylaimoidea). Nematologia Mediterranea, 13, 7–13.Google Scholar
  14. Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E., & Stanhope, M. J. (2001). Universal trees based on large combined protein sequence data sets. Nature Genetics, 28, 281–285.PubMedCrossRefGoogle Scholar
  15. Brzeski, M. W. (1981). The genera of Anguinidae (Nematoda, Tylenchida). Review of Nematology, 4, 23–34.Google Scholar
  16. Burglin, T. R. (1994). A comprehensive classification of homeobox genes. In D. Duboijix (Ed.), Guidebook to the Homobox genes (pp. 27–71). New York: Oxford University Press.Google Scholar
  17. Carrol, S. B., Grenier, J. K., & Weatherbee, S. D. (2001). From DNA to diversity. Molecular genetics and the evolution of animal design (214pp.). Malden: Blackwell Science.Google Scholar
  18. Castagnone-Sereno, P. (2006). Genetic variability and adaptive evolution in parthenogenetic root-knot nematodes. Heredity, 96, 282–289.PubMedCrossRefGoogle Scholar
  19. Castagnone-Sereno, P., Piotte, C., Ujithof, J., Abad, P., Wajnberg, E., Vanlerberghe-Masutti, F., Bongiovanni, M., & Dalmasso, A. (1993). Phylogenetic relationships between amphimictic and parthenogenetic nematodes of the genus Meloidogyne as inferred from repetitive DNA analysis. Heredity, 70, 195–204.CrossRefGoogle Scholar
  20. Castagnone-Sereno, P., Danchin, E. G. J., Perfus-Barbeoch, L., & Abad, P. (2013). Diversity and evolution of root-knot nematodes, genus Meloidogyne: New insights from the genomic era. Annual Review of Phytopathology, 51 (in press). doi: 10.1146/annurev-phyto-082712-102300
  21. Chaudhuri, J., Kache, V., & Pires-daSilva, A. (2011). Regulation of sexual plasticity in a nematode that produces males, females, and hermaphrodites. Current Biology, 21, 1548–1551.PubMedCrossRefGoogle Scholar
  22. Chizhov, V. N., & Subbotin, S. A. (1985). Revision of the nematode from the subfamily Anguininae (Nematoda, Tylenchida) on the basis of their biological characteristics. Zoologichesky Zhurnal, 64, 1476–1486 (in Russian).Google Scholar
  23. Chizhov, V. N., & Subbotin, S. A. (1990). Plant-parasitic nematodes of the subfamily Anguininae (Nematoda, Tylenchida). Morphology, trophic specialization systematics. Zoologicheskii Zhurnal, 69, 15–26 (in Russian).Google Scholar
  24. Cho, S., Jin, S. W., Cohen, A., & Ellis, R. E. (2004). A phylogeny of Caenorhabditis reveals frequent loss of introns during nematode evolution. Genome Research, 14, 1207–1220.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Chomyn, A., & Attardi, G. (1987). Mitochondrial gene products. Current Topics in Bioenergetics, 15, 295–329.Google Scholar
  26. Coghlan, A. (2005). Nematode genome evolution. In The C. elgans Research Community (Ed.), Wormbook (pp. 1–15). doi: 10.1895/wormbook.1.15.1
  27. Coghlan, A., & Wolfe, K. H. (2002). Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. Genome Research, 12, 857–867.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Csankovszki, G., McDonel, P., & Meyer, B. J. (2004). Recruitment and spreading of the C. elegans dosage compensation complex along X chromosomes. Science, 303, 1182–1185.PubMedCrossRefGoogle Scholar
  29. Decraemer, W., Karanastasi, E., Brown, D., & Backeljau, T. (2003). Review of the ultrastructure of the nematode body cuticle and its phylogenetic interpretation. Biological Reviews, 78, 465–510.PubMedCrossRefGoogle Scholar
  30. De Ley, P., & Blaxter, M. (2002). Systematic position and phylogeny. In D. L. Lee (Ed.), The biology of nematodes (pp. 1–30). London: Taylor & Francis.CrossRefGoogle Scholar
  31. Denver, D. R., Morris, K., Lynch, M., & Thomas, W. K. (2004). High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature, 430, 679–682.PubMedCrossRefGoogle Scholar
  32. de Rosa, R., Grenier, J. K., Andreeva, T., Cook, C. E., Adoutte, A., Akam, M., Carroll, S. B., & Balavoine, G. (1999). Hox genes in brachiopods and priapulids and protostome evolution. Nature, 399, 772–776.PubMedCrossRefGoogle Scholar
  33. Dorris, M., De Ley, P., & Blaxter, M. L. (1999). Molecular analysis of nematode diversity and the evolution of parasitism. Parasitology Today, 15, 188–193.PubMedCrossRefGoogle Scholar
  34. Dupuis, C. (1884). Nouvelles données biologiques et morphologiques sur les DiptPres PhasiinF parasites d’HémiptPres HétéroptPres. Annales de Parisitologie Humaine et Comparée, 22, 201–232.Google Scholar
  35. Eisen, J. A. (1998). Phylogenomics: Improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Research, 8, 163–167.PubMedCrossRefGoogle Scholar
  36. Eisen, J. A., & Fraser, C. M. (2003). Phylogenomics: Intersection of evolution and genomics. Science, 300, 1706–1707.PubMedCrossRefGoogle Scholar
  37. Ellis, R. E., & Cho, S. (2003). Rapid evolution of nematode mating systems. International Worm Meeting, citeulike: 3308414.Google Scholar
  38. Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 27, 401–410.CrossRefGoogle Scholar
  39. Ferris, V. R., & Ferris, J. M. (1987). Phylogenetic concepts and methods. In J. A.Veech & D. W. Dickson (Eds.), Vistas on Nematology (pp. 346–353, 509pp.). Society of Hyattsville: Nematologists.Google Scholar
  40. Fitch, D. H. A., & Thomas, W. K. (1997). Evolution. In D. L. Riddle, T. Blumenthal, B. J. Meyer, & J. R. Priess (Eds.), C. elegans II (pp. 815–850). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  41. Fitch, D. H. A., Bugaj-gaweda, B., & Emmons, S. W. (1995). 18S ribosomal gene phylogeny for some rhabditidae related to Caenorhabditis elegans. Molecular Biology and Evolution, 12, 346–358.PubMedGoogle Scholar
  42. Floyd, R., Abebe, E., Papert, A., & Blaxter, M. (2002). Molecular barcodes for soil nematode identification. Molecular Ecology, 11, 839–850.PubMedCrossRefGoogle Scholar
  43. Frugoli, J. A., McPeek, M. A., Thomas, T. L., & McClung, C. R. (1998). Intron loss and gain during evolution of the catalase gene family in angiosperms. Genetics, 149, 355–365.PubMedCentralPubMedGoogle Scholar
  44. Ganko, E. W., Bhattacharjee, V., Schliekelman, P., & McDonald, J. F. (2003). Evidence for the contribution of LTR retrotransposons to C. elegans gene evolution. Molecular Biology and Evolution, 20, 1925–1931.PubMedCrossRefGoogle Scholar
  45. Giribet, G., & Ribera, C. (1998). The position of arthropods in the animal kingdom: A search for a reliable outgroup for internal arthropod phylogeny. Molecular Phylogenetics and Evolution, 9, 481–488.PubMedCrossRefGoogle Scholar
  46. Giribet, G., & Wheeler, W. C. (1999). On gaps. Molecular Phylogenetics and Evolution, 13, 132–143.PubMedCrossRefGoogle Scholar
  47. Graustein, A., Gaspar, J. M., Walters, J. R., & Palopoli, M. F. (2002). Levels of DNA polymorphism vary with mating system in the nematode genus Caenorhabditis. Genetics, 161, 99–107.PubMedCentralPubMedGoogle Scholar
  48. Gutierrez, A., & Sommer, R. J. (2004). Evolution of dnmt-2 and mbd-2-like genes in the free-living nematodes Pristionchus pacificus, Caenorhabditis elegans and Caenorhabditis briggsae. Nucleic Acids Research, 32, 6388–6396.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Gutierrez, A., Knoch, L., Witte, H., & Sommer, R. J. (2003). Functional specificity of the nematode Hox gene mab-5. Development, 130, 983–993.PubMedCrossRefGoogle Scholar
  50. Haag, E. S., & Doty, A. V. (2005). Sex determination across evolution: Connecting the dots. PLoS Biology, 3, e21.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Halanych, K. M. (1995). The phylogenetic position of the pterobranch hemichordates based on 18S rDNA sequence data. Molecular Phylogenetics and Evolution, 4, 72–76.PubMedCrossRefGoogle Scholar
  52. Harcus, Y. M., Parkinson, J., Fernandez, C., Daub, J., Selkirk, M. E., Blaxter, M. L., & Maizels, R. M. (2004). Signal sequence analysis of expressed sequence tags from the nematode, Nippostrongylus brasiliensis and the evolution of secreted proteins in parasites. Genome Biology, 5, R39.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Holterman, M., Doroszuk, A., Helder, J., & van der Wurff, A. (2006, June 5–9). A comparative analysis of traits involved in stress tolerance in nematodes. 28th International Symposium of the European Society of Nematologists, Blagoevgrad.Google Scholar
  54. Hyman, L. H. (1951). The invertebrates (318pp.). New York: McGraw-Hill Publishers.Google Scholar
  55. Hyman, B. C., & Azevedol, B. (1995). Similar evolutionary patterning among repeated and single copy nematode mitochondrial genes. Molecular Biology and Evolution, 13, 221–232.CrossRefGoogle Scholar
  56. Jenner, R. A. (2000). Evolution of animal body plans: The role of metazoan phylogeny at the interface between pattern and process. Evolution and Development, 2, 1–14.CrossRefGoogle Scholar
  57. Jones, M., & Blaxter, M. (2005). Evolutionary biology: Animal roots and shoots. Nature, 434, 1076–1077.PubMedCrossRefGoogle Scholar
  58. Kaestner, A. (1965). Lehrbuch der Speziellen Zoologie. Bd. I:Wirbellose, 1. Teil. Stuttgart: Gustav Fischer Verlag.Google Scholar
  59. Kaplan, D. T., Thomas, W. K., Frisse, L. M., Sarah, J. L., Stanton, J. M., Speijer, P. R., Marin, D. H., & Opperman, C. H. (2000). Phylogenetic analysis of geographically diverse Radopholus similis via rDNA sequence reveals a monomorphic motif. Journal of Nematology, 32, 134–142.PubMedCentralPubMedGoogle Scholar
  60. Katju, V., & Lynch, M. (2006). On the formation of novel genes by duplication in the Caenorhabditis elegans genome. Molecular Biology and Evolution, 23, 1056–1067.PubMedCrossRefGoogle Scholar
  61. Kelchner, S. A. (2002). Group II introns as phylogenetic tools: Structure, function, and evolutionary constraints. American Journal of Botany, 89, 1651–1669.PubMedCrossRefGoogle Scholar
  62. Kim, J. (1998). Large-scale phylogenies and measuring the performance of phylogenetic estimators. Systematic Biology, 47, 43–60.PubMedCrossRefGoogle Scholar
  63. Lambshead, P. J. D. (1993). Recent developments in marine benthic biodiversity research. Oceanis, 19, 5–24.Google Scholar
  64. Maggenti, A. R. (1983). In A. R. Stone et al. (Eds.), Concepts in nematode systematics (pp. 25–40). Academic Press.Google Scholar
  65. Malakhov, V. V. (1994). Nematodes. Structure, development, classification and phylogeny. Washington, DC: Smithsonian Institution Press.Google Scholar
  66. McClung, C. E. (1902). The accessory chromosome—Sex determinant? The Biological Bulletin Marine Biological Laboratory Woods Hole, 3, 43–84.CrossRefGoogle Scholar
  67. Mortiz, C., & Brown, W. M. (1986). Tandem duplication of D-loop and ribosomal RNA sequences in lizard mitochondrial DNA. Science, 233, 1425–1427.CrossRefGoogle Scholar
  68. Moritz, C., Dowling, T. E., & Brown, W. M. (1987). Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Annual Review of Ecology & Systematics, 18, 269–292.CrossRefGoogle Scholar
  69. Nicoll, M., Akerib, C. C., & Meyer, B. J. (1997). X-chromosome-counting mechanisms that determine nematode sex. Nature, 388, 200–204.PubMedCrossRefGoogle Scholar
  70. Opperman, C. H., Bird, D. M., Williamson, V. M., Rokhsar, D. S., Burke, M., Cohn, J., Cromer, J., Diener, S., Gajan, J., Graham, S., Houfek, T. D., Liu, Q., Mitros, T., Schaff, J., Schaffer, R., Scholl, E., Sosinski, B. R., Thomas, V. P., & Windham, E. (2008). Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. PNAS, 105, 14802–14807.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Parkinson, J., Mitreva, M., Whitton, C., Thomson, M., Daub, J., Martin, J., Schmid, R., Hall, N., Barrell, B., & Waterston, R. H. (2004). A transcriptomic analysis of the phylum Nematoda. Nature Genetics, 36, 1259–1267.PubMedCrossRefGoogle Scholar
  72. Peterson, K. J., & Eernisse, D. J. (2001). Animal phylogeny and the ancestry of bilaterians: Inferences from morphology and 18S rDNA gene sequences. Evolution and Development, 3, 170–205.PubMedCrossRefGoogle Scholar
  73. Philip, G. K., Creevev, C. J., & Mclnerney, J. O. (2005). The Opisthokonta and the Ecdysozoa may not be clades: Stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa. Molecular Biology and Evolution, 22, 1175–1184.PubMedCrossRefGoogle Scholar
  74. Pires-daSilva, A. (2007). Evolution of the control of sexual identity in nematodes. Seminars in Cell and Developmental Biology, 18, 362–370.PubMedCrossRefGoogle Scholar
  75. Poinar, G. O., Jr. (1983). The natural history of nematodes. Englewood Cliffs: Prentice Hall.Google Scholar
  76. Raven, P. H., & Johnson, G. B. (1985). Biology (4th ed., 1310pp.). Dubuque: Wm C Brown Publishers.Google Scholar
  77. Robertson, H. M. (2001). Updating thestr and srj (stl) families of chemoreceptors in Caenorhabditis nematodes reveals frequent gene movement within and between chromosomes. Chemical Senses, 26, 151–159.PubMedCrossRefGoogle Scholar
  78. Rödelsperger, C., & Dieterich, C. (2010). CYNTENATOR: Progressive gene order alignment of 17 vertebrate genomes. PloS One, 5, e8861.PubMedCentralPubMedCrossRefGoogle Scholar
  79. Rödelsperger, C., Streit, A., & Ralf, J. (2013). Structure, function and evolution of the nematode genome. In eLS. Chichester: Wiley. doi: 10.1002/9780470015902.a0024603
  80. Scholl, E. H., Thorne, J. L., McCarter, J. P., & Bird, D. M. (2003). Horizontally transferred genes in plant-parasitic nematodes: A high-throughput genomic approach. Genome Biology, 4, 39–47.CrossRefGoogle Scholar
  81. Schulze, J., & Schierenberg, E. (2011). Evolution of embryonic development in nematodes. EvoDevo, 2, 18.PubMedCentralPubMedCrossRefGoogle Scholar
  82. Sharakhov, I. V., Serazin, A. C., Grushko, O. G., Dana, A., Lobo, N., Hillenmeyer, M. E., Westerman, R., Romero-Severson, J., Costantini, C., & Sagnon, N. (2002). Inversions and gene order shuffling in Anopheles gambiae and A. funestus. Science, 298, 182–185.PubMedCrossRefGoogle Scholar
  83. Sidow, A., & Thomas, W. K. (1994). A molecular evolutionary framework for eukaryotic model organisms. Current Biology, 4, 596–603.PubMedCrossRefGoogle Scholar
  84. Snyder, M., Fraser, A. R., Laroche, J., Gartner-Kepkay, K. E., & Zouros, E. (1987). Atypical mitochondrial DNA from the deep-sea scallop Placopecten magellanicus. Proceedings of the National Academy of Sciences of the United States of America, 84, 7595–7599.PubMedCentralPubMedCrossRefGoogle Scholar
  85. Stein, L. D., Bao, Z., Blasiar, D., Blumenthal, T., Brent, M. R., Chen, N., Chinwalla, A., Clarke, L., Clee, C., & Coghlan, A. (2003). The genome sequence of Caenorhabditis briggsae: A platform for comparative genomics. PLoS Biology, 1, E45.PubMedCentralPubMedCrossRefGoogle Scholar
  86. Stone, A. R. (1983). Three approaches to the status of a species complex, with a revision of some species of Globodera (Nematoda: Heteroderidae). In A. R. Stone, H. M. Platt, & L. F. Khalil (Eds.), Concepts in Nematode systematics (pp. 221–223, 388pp.). London: Academic Press.Google Scholar
  87. Subbotin, S. A., Vierstraete, A., de Ley, P., Rowe, J., Waeyenberge, L., Moens, M., & Vanfleteren, J. R. (2001). Phylogenetic relationships within the cyst-forming nematodes (Nematoda: Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA. Molecular Phylogenetic & Evolution, 21, 1–16.CrossRefGoogle Scholar
  88. Subbotin, S. A., Sturhan, D., & Moens, M. (2004). Molecular phylogenies of plant and entomoparasitic nematodes: Congruence and incongruence with morphological and biological data. In R. Cook & D. J. Hunt (Eds.), Proceedings of the fourth international congress of nematology, 8–13 June 2002 (Tenerife. Nematology monographs and perspectives 2, pp. 601–614). Leiden: Brill.Google Scholar
  89. Tahera Sultana, Jiyeon Kim, Sang-Hwa Lee, Hyerim Han, Sanghee Kim, Gi-Sik Min, Nadler, S. A., & Joong-Ki Park. (2013). Comparative analysis of complete mitochondrial genome sequences confirms independent origins of plant-parasitic nematodes. BMC Evolutionary Biology, 13, 12.Google Scholar
  90. Tomalova, I., Iachia, C., Mulet, K., & Castagnone-Sereno, P. (2012). The map-1 gene family in root-knot nematodes, Meloidogyne spp.: A set of taxonomically restricted genes specific to clonal species. PLoS One, 7(6), e38656.PubMedCentralPubMedCrossRefGoogle Scholar
  91. Triantaphyllou, A. C. (1960). Sex determination in Meloidogyne incognita Chitwood, 1949 and intersexuality in M. javanica (Treub, 1885) Chitwood, 1949. Annals Institute of Phytopathology Benaki NS, 3, 12–31.Google Scholar
  92. Triantaphyllou, A. C. (1984). Polyploidy in meiotic parthenogenetic populations of Meloidogyne hapla and a mechanism of conversion to diploidy. Review of Nematology, 7, 65–72.Google Scholar
  93. Triantaphyllou, A. C. (1985). Cytogenetics, cytotaxonomy and phylogeny of root-knot nematodes. In J. N. Sasser & C. C. Carter (Eds.), An advanced treatise on meloidogyne (Vol. 1, pp. 113–126). Raleigh: North Carolina State University Graphics.Google Scholar
  94. Underwood, A. P., & Bianco, A. E. (1999). Identification of a molecular marker for the Y chromosome of Brugia malayi. Molecular and Biochemical Parasitology, 99, 1–10.PubMedCrossRefGoogle Scholar
  95. Voronov, D. A., & Panchin, Y. V. (1998). Cell lineage in marine nematode Enoplus brevis. Development, 125, 143–150.PubMedGoogle Scholar
  96. Wada, H., Kobayashi, M., Sato, R., Satoh, N., Miyasaka, H., & Shirayama, Y. (2002). Dynamic insertion-deletion of introns in deuterostome EF-1α genes. Journal of Molecular Evolution, 54, 118–128.PubMedCrossRefGoogle Scholar
  97. Waggoner, B., & Brian S. (2004). Introduction to the Nematoda (127pp.). UCMP.Google Scholar
  98. Wallace, R. L., Ricci, C., & Melone, G. (1996). A cladistic analysis of pseudocoelomate (aschelminth) morphology. Invertebrate Biology, 115, 104–112.CrossRefGoogle Scholar
  99. Whitton, C., Daub, J., Quail, M., Hall, N., Foster, J., Ware, J., Ganatra, M., Slatko, B., Barrell, B., & Blaxter, M. (2004). A genome sequence survey of the filarial nematode Brugia malayi: Repeats, gene discovery, and comparative genomics. Molecular and Biochemical Parasitology, 137, 215–227.PubMedCrossRefGoogle Scholar
  100. Wolf, Y. I., Rogozin, I. B., & Koonin, E. V. (2004). Coelomata and not Ecdysozoa: Evidence from genome-wide phylogenetic analysis. Genome Research, 14, 29–36.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • N. G. Ravichandra
    • 1
  1. 1.AICRP (Nematodes) Department of Plant PathologyUniversity of Agricultural SciencesBangaloreIndia

Personalised recommendations