Skip to main content

Phylogenetic and Evolutionary Concepts in Nematodes

  • Chapter
  • First Online:
Book cover Horticultural Nematology
  • 1340 Accesses

Abstract

Keeping the medical, ecological, and economical importance of nematode phylum in mind, it is remarkable to see that nematode systematics is far from established. It has a long history of constant revision, and there may be as many classifications as there are nematode taxonomists. Ferris and Ferris (1987) anticipated about the growing sense of excitement pervading systematics as new techniques make it possible a depth of understanding of phylogenetic relationships and affinities never before thought possible. They further stated that Darwin’s “genealogical taxonomy,” based on the concepts of descent with modification, is linked directly with two approaches to phylogenetic inference, viz., phenetics and cladistics. In both of these, patterns of descent take precedence over processes, and in classifications based on these procedures, “grades” and “gaps” beloved by the evolutionary systematics are ignored and categories are usually of lesser importance (Dupuis 1884). The phenetic approach deals with “natural classification” based on overall similarity and the belief that the more characters a classification is based on, the more reliable it will be.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboobaker, A., & Blaxter, M. (2003). Hox gene evolution in nematodes: Novelty conserved. Current Opinion in Genetics and Development, 13, 593–598.

    Article  CAS  PubMed  Google Scholar 

  • Adams, B. J. (1998). Species concepts and the evolutionary paradigm in modern nematology. Journal of Nematology, 30, 1–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aguinaldo, A. M. A., Turbeville, J. M., Linford, L. S., Rivera, M. C., Garey, J. R., Raff, R. A., & Lake, J. A. (1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387, 489–493.

    Article  CAS  PubMed  Google Scholar 

  • Archetti, M. (2004). Recombination and loss of complementation: A more than two-fold cost for parthenogenesis. Journal of Evolutionary Biology, 17, 1084–1097.

    Article  CAS  PubMed  Google Scholar 

  • Averof, M., & Patel, N. H. (1997). Crustacean appendage evolution associated with changes in Hox gene expression. Nature, 388, 682–686.

    Article  CAS  PubMed  Google Scholar 

  • Balavoine, G., de Rosa, R., & Adoutte, A. (2002). Hox clusters and bilaterian phylogeny. Molecular Phylogenetics and Evolution, 24, 366–373.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin, J. G., Nadler, S. A., & Adms, B. J. (2004). Evolution of plant parasitism among nematodes. Annual Review of Phytopathology, 42, 83–105.

    Article  CAS  PubMed  Google Scholar 

  • Blair, J. E., Ikeo, K., Gojobori, T., & Blair, S. H. (2002). The evolutionary position of nematodes. BMC Evolutionary Biology, 2, 7.

    Article  PubMed Central  PubMed  Google Scholar 

  • Blaxter, M. (2003). Comparative genomics: Two worms are better than one. Nature, 426, 395–396.

    Article  CAS  PubMed  Google Scholar 

  • Blaxter, M. L., De Ley, P., & Garey, J. R. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature, 392, 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Blaxter, M., Dorris, M., & De Ley, P. (2000). Patterns and processes in the evolution of animal parasitic nematodes. Nematology, 2, 43–55.

    Article  Google Scholar 

  • Blumenthal, T. (2005). Trans-splicing and operons. In The C.elegans Research Community (Ed.), WormBook. doi:10.1895/wormbook.1.5.1

  • Brown, D. J. F. (1985). The effect, after 4 years, of a change in biotope on the morphometrics of populations of Xiphinema diversicaudatum (Nematoda: Dorylaimoidea). Nematologia Mediterranea, 13, 7–13.

    Google Scholar 

  • Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E., & Stanhope, M. J. (2001). Universal trees based on large combined protein sequence data sets. Nature Genetics, 28, 281–285.

    Article  CAS  PubMed  Google Scholar 

  • Brzeski, M. W. (1981). The genera of Anguinidae (Nematoda, Tylenchida). Review of Nematology, 4, 23–34.

    Google Scholar 

  • Burglin, T. R. (1994). A comprehensive classification of homeobox genes. In D. Duboijix (Ed.), Guidebook to the Homobox genes (pp. 27–71). New York: Oxford University Press.

    Google Scholar 

  • Carrol, S. B., Grenier, J. K., & Weatherbee, S. D. (2001). From DNA to diversity. Molecular genetics and the evolution of animal design (214pp.). Malden: Blackwell Science.

    Google Scholar 

  • Castagnone-Sereno, P. (2006). Genetic variability and adaptive evolution in parthenogenetic root-knot nematodes. Heredity, 96, 282–289.

    Article  CAS  PubMed  Google Scholar 

  • Castagnone-Sereno, P., Piotte, C., Ujithof, J., Abad, P., Wajnberg, E., Vanlerberghe-Masutti, F., Bongiovanni, M., & Dalmasso, A. (1993). Phylogenetic relationships between amphimictic and parthenogenetic nematodes of the genus Meloidogyne as inferred from repetitive DNA analysis. Heredity, 70, 195–204.

    Article  CAS  Google Scholar 

  • Castagnone-Sereno, P., Danchin, E. G. J., Perfus-Barbeoch, L., & Abad, P. (2013). Diversity and evolution of root-knot nematodes, genus Meloidogyne: New insights from the genomic era. Annual Review of Phytopathology, 51 (in press). doi:10.1146/annurev-phyto-082712-102300

  • Chaudhuri, J., Kache, V., & Pires-daSilva, A. (2011). Regulation of sexual plasticity in a nematode that produces males, females, and hermaphrodites. Current Biology, 21, 1548–1551.

    Article  CAS  PubMed  Google Scholar 

  • Chizhov, V. N., & Subbotin, S. A. (1985). Revision of the nematode from the subfamily Anguininae (Nematoda, Tylenchida) on the basis of their biological characteristics. Zoologichesky Zhurnal, 64, 1476–1486 (in Russian).

    Google Scholar 

  • Chizhov, V. N., & Subbotin, S. A. (1990). Plant-parasitic nematodes of the subfamily Anguininae (Nematoda, Tylenchida). Morphology, trophic specialization systematics. Zoologicheskii Zhurnal, 69, 15–26 (in Russian).

    Google Scholar 

  • Cho, S., Jin, S. W., Cohen, A., & Ellis, R. E. (2004). A phylogeny of Caenorhabditis reveals frequent loss of introns during nematode evolution. Genome Research, 14, 1207–1220.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chomyn, A., & Attardi, G. (1987). Mitochondrial gene products. Current Topics in Bioenergetics, 15, 295–329.

    CAS  Google Scholar 

  • Coghlan, A. (2005). Nematode genome evolution. In The C. elgans Research Community (Ed.), Wormbook (pp. 1–15). doi:10.1895/wormbook.1.15.1

  • Coghlan, A., & Wolfe, K. H. (2002). Fourfold faster rate of genome rearrangement in nematodes than in Drosophila. Genome Research, 12, 857–867.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Csankovszki, G., McDonel, P., & Meyer, B. J. (2004). Recruitment and spreading of the C. elegans dosage compensation complex along X chromosomes. Science, 303, 1182–1185.

    Article  CAS  PubMed  Google Scholar 

  • Decraemer, W., Karanastasi, E., Brown, D., & Backeljau, T. (2003). Review of the ultrastructure of the nematode body cuticle and its phylogenetic interpretation. Biological Reviews, 78, 465–510.

    Article  PubMed  Google Scholar 

  • De Ley, P., & Blaxter, M. (2002). Systematic position and phylogeny. In D. L. Lee (Ed.), The biology of nematodes (pp. 1–30). London: Taylor & Francis.

    Chapter  Google Scholar 

  • Denver, D. R., Morris, K., Lynch, M., & Thomas, W. K. (2004). High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature, 430, 679–682.

    Article  CAS  PubMed  Google Scholar 

  • de Rosa, R., Grenier, J. K., Andreeva, T., Cook, C. E., Adoutte, A., Akam, M., Carroll, S. B., & Balavoine, G. (1999). Hox genes in brachiopods and priapulids and protostome evolution. Nature, 399, 772–776.

    Article  CAS  PubMed  Google Scholar 

  • Dorris, M., De Ley, P., & Blaxter, M. L. (1999). Molecular analysis of nematode diversity and the evolution of parasitism. Parasitology Today, 15, 188–193.

    Article  CAS  PubMed  Google Scholar 

  • Dupuis, C. (1884). Nouvelles données biologiques et morphologiques sur les DiptPres PhasiinF parasites d’HémiptPres HétéroptPres. Annales de Parisitologie Humaine et Comparée, 22, 201–232.

    Google Scholar 

  • Eisen, J. A. (1998). Phylogenomics: Improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Research, 8, 163–167.

    Article  CAS  PubMed  Google Scholar 

  • Eisen, J. A., & Fraser, C. M. (2003). Phylogenomics: Intersection of evolution and genomics. Science, 300, 1706–1707.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, R. E., & Cho, S. (2003). Rapid evolution of nematode mating systems. International Worm Meeting, citeulike: 3308414.

    Google Scholar 

  • Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 27, 401–410.

    Article  Google Scholar 

  • Ferris, V. R., & Ferris, J. M. (1987). Phylogenetic concepts and methods. In J. A.Veech & D. W. Dickson (Eds.), Vistas on Nematology (pp. 346–353, 509pp.). Society of Hyattsville: Nematologists.

    Google Scholar 

  • Fitch, D. H. A., & Thomas, W. K. (1997). Evolution. In D. L. Riddle, T. Blumenthal, B. J. Meyer, & J. R. Priess (Eds.), C. elegans II (pp. 815–850). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Fitch, D. H. A., Bugaj-gaweda, B., & Emmons, S. W. (1995). 18S ribosomal gene phylogeny for some rhabditidae related to Caenorhabditis elegans. Molecular Biology and Evolution, 12, 346–358.

    CAS  PubMed  Google Scholar 

  • Floyd, R., Abebe, E., Papert, A., & Blaxter, M. (2002). Molecular barcodes for soil nematode identification. Molecular Ecology, 11, 839–850.

    Article  CAS  PubMed  Google Scholar 

  • Frugoli, J. A., McPeek, M. A., Thomas, T. L., & McClung, C. R. (1998). Intron loss and gain during evolution of the catalase gene family in angiosperms. Genetics, 149, 355–365.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ganko, E. W., Bhattacharjee, V., Schliekelman, P., & McDonald, J. F. (2003). Evidence for the contribution of LTR retrotransposons to C. elegans gene evolution. Molecular Biology and Evolution, 20, 1925–1931.

    Article  CAS  PubMed  Google Scholar 

  • Giribet, G., & Ribera, C. (1998). The position of arthropods in the animal kingdom: A search for a reliable outgroup for internal arthropod phylogeny. Molecular Phylogenetics and Evolution, 9, 481–488.

    Article  CAS  PubMed  Google Scholar 

  • Giribet, G., & Wheeler, W. C. (1999). On gaps. Molecular Phylogenetics and Evolution, 13, 132–143.

    Article  CAS  PubMed  Google Scholar 

  • Graustein, A., Gaspar, J. M., Walters, J. R., & Palopoli, M. F. (2002). Levels of DNA polymorphism vary with mating system in the nematode genus Caenorhabditis. Genetics, 161, 99–107.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gutierrez, A., & Sommer, R. J. (2004). Evolution of dnmt-2 and mbd-2-like genes in the free-living nematodes Pristionchus pacificus, Caenorhabditis elegans and Caenorhabditis briggsae. Nucleic Acids Research, 32, 6388–6396.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gutierrez, A., Knoch, L., Witte, H., & Sommer, R. J. (2003). Functional specificity of the nematode Hox gene mab-5. Development, 130, 983–993.

    Article  CAS  PubMed  Google Scholar 

  • Haag, E. S., & Doty, A. V. (2005). Sex determination across evolution: Connecting the dots. PLoS Biology, 3, e21.

    Article  PubMed Central  PubMed  Google Scholar 

  • Halanych, K. M. (1995). The phylogenetic position of the pterobranch hemichordates based on 18S rDNA sequence data. Molecular Phylogenetics and Evolution, 4, 72–76.

    Article  CAS  PubMed  Google Scholar 

  • Harcus, Y. M., Parkinson, J., Fernandez, C., Daub, J., Selkirk, M. E., Blaxter, M. L., & Maizels, R. M. (2004). Signal sequence analysis of expressed sequence tags from the nematode, Nippostrongylus brasiliensis and the evolution of secreted proteins in parasites. Genome Biology, 5, R39.

    Article  PubMed Central  PubMed  Google Scholar 

  • Holterman, M., Doroszuk, A., Helder, J., & van der Wurff, A. (2006, June 5–9). A comparative analysis of traits involved in stress tolerance in nematodes. 28th International Symposium of the European Society of Nematologists, Blagoevgrad.

    Google Scholar 

  • Hyman, L. H. (1951). The invertebrates (318pp.). New York: McGraw-Hill Publishers.

    Google Scholar 

  • Hyman, B. C., & Azevedol, B. (1995). Similar evolutionary patterning among repeated and single copy nematode mitochondrial genes. Molecular Biology and Evolution, 13, 221–232.

    Article  Google Scholar 

  • Jenner, R. A. (2000). Evolution of animal body plans: The role of metazoan phylogeny at the interface between pattern and process. Evolution and Development, 2, 1–14.

    Article  Google Scholar 

  • Jones, M., & Blaxter, M. (2005). Evolutionary biology: Animal roots and shoots. Nature, 434, 1076–1077.

    Article  CAS  PubMed  Google Scholar 

  • Kaestner, A. (1965). Lehrbuch der Speziellen Zoologie. Bd. I:Wirbellose, 1. Teil. Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Kaplan, D. T., Thomas, W. K., Frisse, L. M., Sarah, J. L., Stanton, J. M., Speijer, P. R., Marin, D. H., & Opperman, C. H. (2000). Phylogenetic analysis of geographically diverse Radopholus similis via rDNA sequence reveals a monomorphic motif. Journal of Nematology, 32, 134–142.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katju, V., & Lynch, M. (2006). On the formation of novel genes by duplication in the Caenorhabditis elegans genome. Molecular Biology and Evolution, 23, 1056–1067.

    Article  CAS  PubMed  Google Scholar 

  • Kelchner, S. A. (2002). Group II introns as phylogenetic tools: Structure, function, and evolutionary constraints. American Journal of Botany, 89, 1651–1669.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. (1998). Large-scale phylogenies and measuring the performance of phylogenetic estimators. Systematic Biology, 47, 43–60.

    Article  CAS  PubMed  Google Scholar 

  • Lambshead, P. J. D. (1993). Recent developments in marine benthic biodiversity research. Oceanis, 19, 5–24.

    Google Scholar 

  • Maggenti, A. R. (1983). In A. R. Stone et al. (Eds.), Concepts in nematode systematics (pp. 25–40). Academic Press.

    Google Scholar 

  • Malakhov, V. V. (1994). Nematodes. Structure, development, classification and phylogeny. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • McClung, C. E. (1902). The accessory chromosome—Sex determinant? The Biological Bulletin Marine Biological Laboratory Woods Hole, 3, 43–84.

    Article  Google Scholar 

  • Mortiz, C., & Brown, W. M. (1986). Tandem duplication of D-loop and ribosomal RNA sequences in lizard mitochondrial DNA. Science, 233, 1425–1427.

    Article  Google Scholar 

  • Moritz, C., Dowling, T. E., & Brown, W. M. (1987). Evolution of animal mitochondrial DNA: Relevance for population biology and systematics. Annual Review of Ecology & Systematics, 18, 269–292.

    Article  Google Scholar 

  • Nicoll, M., Akerib, C. C., & Meyer, B. J. (1997). X-chromosome-counting mechanisms that determine nematode sex. Nature, 388, 200–204.

    Article  CAS  PubMed  Google Scholar 

  • Opperman, C. H., Bird, D. M., Williamson, V. M., Rokhsar, D. S., Burke, M., Cohn, J., Cromer, J., Diener, S., Gajan, J., Graham, S., Houfek, T. D., Liu, Q., Mitros, T., Schaff, J., Schaffer, R., Scholl, E., Sosinski, B. R., Thomas, V. P., & Windham, E. (2008). Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. PNAS, 105, 14802–14807.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parkinson, J., Mitreva, M., Whitton, C., Thomson, M., Daub, J., Martin, J., Schmid, R., Hall, N., Barrell, B., & Waterston, R. H. (2004). A transcriptomic analysis of the phylum Nematoda. Nature Genetics, 36, 1259–1267.

    Article  PubMed  Google Scholar 

  • Peterson, K. J., & Eernisse, D. J. (2001). Animal phylogeny and the ancestry of bilaterians: Inferences from morphology and 18S rDNA gene sequences. Evolution and Development, 3, 170–205.

    Article  CAS  PubMed  Google Scholar 

  • Philip, G. K., Creevev, C. J., & Mclnerney, J. O. (2005). The Opisthokonta and the Ecdysozoa may not be clades: Stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the Coelomata than Ecdysozoa. Molecular Biology and Evolution, 22, 1175–1184.

    Article  CAS  PubMed  Google Scholar 

  • Pires-daSilva, A. (2007). Evolution of the control of sexual identity in nematodes. Seminars in Cell and Developmental Biology, 18, 362–370.

    Article  PubMed  Google Scholar 

  • Poinar, G. O., Jr. (1983). The natural history of nematodes. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Raven, P. H., & Johnson, G. B. (1985). Biology (4th ed., 1310pp.). Dubuque: Wm C Brown Publishers.

    Google Scholar 

  • Robertson, H. M. (2001). Updating thestr and srj (stl) families of chemoreceptors in Caenorhabditis nematodes reveals frequent gene movement within and between chromosomes. Chemical Senses, 26, 151–159.

    Article  CAS  PubMed  Google Scholar 

  • Rödelsperger, C., & Dieterich, C. (2010). CYNTENATOR: Progressive gene order alignment of 17 vertebrate genomes. PloS One, 5, e8861.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rödelsperger, C., Streit, A., & Ralf, J. (2013). Structure, function and evolution of the nematode genome. In eLS. Chichester: Wiley. doi:10.1002/9780470015902.a0024603

  • Scholl, E. H., Thorne, J. L., McCarter, J. P., & Bird, D. M. (2003). Horizontally transferred genes in plant-parasitic nematodes: A high-throughput genomic approach. Genome Biology, 4, 39–47.

    Article  Google Scholar 

  • Schulze, J., & Schierenberg, E. (2011). Evolution of embryonic development in nematodes. EvoDevo, 2, 18.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharakhov, I. V., Serazin, A. C., Grushko, O. G., Dana, A., Lobo, N., Hillenmeyer, M. E., Westerman, R., Romero-Severson, J., Costantini, C., & Sagnon, N. (2002). Inversions and gene order shuffling in Anopheles gambiae and A. funestus. Science, 298, 182–185.

    Article  CAS  PubMed  Google Scholar 

  • Sidow, A., & Thomas, W. K. (1994). A molecular evolutionary framework for eukaryotic model organisms. Current Biology, 4, 596–603.

    Article  CAS  PubMed  Google Scholar 

  • Snyder, M., Fraser, A. R., Laroche, J., Gartner-Kepkay, K. E., & Zouros, E. (1987). Atypical mitochondrial DNA from the deep-sea scallop Placopecten magellanicus. Proceedings of the National Academy of Sciences of the United States of America, 84, 7595–7599.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stein, L. D., Bao, Z., Blasiar, D., Blumenthal, T., Brent, M. R., Chen, N., Chinwalla, A., Clarke, L., Clee, C., & Coghlan, A. (2003). The genome sequence of Caenorhabditis briggsae: A platform for comparative genomics. PLoS Biology, 1, E45.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stone, A. R. (1983). Three approaches to the status of a species complex, with a revision of some species of Globodera (Nematoda: Heteroderidae). In A. R. Stone, H. M. Platt, & L. F. Khalil (Eds.), Concepts in Nematode systematics (pp. 221–223, 388pp.). London: Academic Press.

    Google Scholar 

  • Subbotin, S. A., Vierstraete, A., de Ley, P., Rowe, J., Waeyenberge, L., Moens, M., & Vanfleteren, J. R. (2001). Phylogenetic relationships within the cyst-forming nematodes (Nematoda: Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA. Molecular Phylogenetic & Evolution, 21, 1–16.

    Article  CAS  Google Scholar 

  • Subbotin, S. A., Sturhan, D., & Moens, M. (2004). Molecular phylogenies of plant and entomoparasitic nematodes: Congruence and incongruence with morphological and biological data. In R. Cook & D. J. Hunt (Eds.), Proceedings of the fourth international congress of nematology, 8–13 June 2002 (Tenerife. Nematology monographs and perspectives 2, pp. 601–614). Leiden: Brill.

    Google Scholar 

  • Tahera Sultana, Jiyeon Kim, Sang-Hwa Lee, Hyerim Han, Sanghee Kim, Gi-Sik Min, Nadler, S. A., & Joong-Ki Park. (2013). Comparative analysis of complete mitochondrial genome sequences confirms independent origins of plant-parasitic nematodes. BMC Evolutionary Biology, 13, 12.

    Google Scholar 

  • Tomalova, I., Iachia, C., Mulet, K., & Castagnone-Sereno, P. (2012). The map-1 gene family in root-knot nematodes, Meloidogyne spp.: A set of taxonomically restricted genes specific to clonal species. PLoS One, 7(6), e38656.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Triantaphyllou, A. C. (1960). Sex determination in Meloidogyne incognita Chitwood, 1949 and intersexuality in M. javanica (Treub, 1885) Chitwood, 1949. Annals Institute of Phytopathology Benaki NS, 3, 12–31.

    Google Scholar 

  • Triantaphyllou, A. C. (1984). Polyploidy in meiotic parthenogenetic populations of Meloidogyne hapla and a mechanism of conversion to diploidy. Review of Nematology, 7, 65–72.

    Google Scholar 

  • Triantaphyllou, A. C. (1985). Cytogenetics, cytotaxonomy and phylogeny of root-knot nematodes. In J. N. Sasser & C. C. Carter (Eds.), An advanced treatise on meloidogyne (Vol. 1, pp. 113–126). Raleigh: North Carolina State University Graphics.

    Google Scholar 

  • Underwood, A. P., & Bianco, A. E. (1999). Identification of a molecular marker for the Y chromosome of Brugia malayi. Molecular and Biochemical Parasitology, 99, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Voronov, D. A., & Panchin, Y. V. (1998). Cell lineage in marine nematode Enoplus brevis. Development, 125, 143–150.

    CAS  PubMed  Google Scholar 

  • Wada, H., Kobayashi, M., Sato, R., Satoh, N., Miyasaka, H., & Shirayama, Y. (2002). Dynamic insertion-deletion of introns in deuterostome EF-1α genes. Journal of Molecular Evolution, 54, 118–128.

    Article  CAS  PubMed  Google Scholar 

  • Waggoner, B., & Brian S. (2004). Introduction to the Nematoda (127pp.). UCMP.

    Google Scholar 

  • Wallace, R. L., Ricci, C., & Melone, G. (1996). A cladistic analysis of pseudocoelomate (aschelminth) morphology. Invertebrate Biology, 115, 104–112.

    Article  Google Scholar 

  • Whitton, C., Daub, J., Quail, M., Hall, N., Foster, J., Ware, J., Ganatra, M., Slatko, B., Barrell, B., & Blaxter, M. (2004). A genome sequence survey of the filarial nematode Brugia malayi: Repeats, gene discovery, and comparative genomics. Molecular and Biochemical Parasitology, 137, 215–227.

    Article  PubMed  Google Scholar 

  • Wolf, Y. I., Rogozin, I. B., & Koonin, E. V. (2004). Coelomata and not Ecdysozoa: Evidence from genome-wide phylogenetic analysis. Genome Research, 14, 29–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Ravichandra, N.G. (2014). Phylogenetic and Evolutionary Concepts in Nematodes. In: Horticultural Nematology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1841-8_3

Download citation

Publish with us

Policies and ethics