Novel Methods of Nematode Management

  • N. G. Ravichandra


A range of phytonematodes can injure various horticultural crops, among which one or more of them occur in most soils. Although some can cause significant losses when present in low numbers, most do not cause economically significant damage unless their numbers are unusually high or the plant is also subject to unusual levels of stress caused by other factors. Careful integration of most suitable management components will help keep most nematode pests below damaging levels and may simplify the decisions that must be made about selecting and applying nematicide when they are needed.


Juvenile Hormone Cyst Nematode Nematode Resistance Potato Cyst Nematode Juvenile Hormone Analog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abd El-Moneim, T. S., & Massoud, S. I. (2009). The effect of endotoxin produced by Bacillus thuringiensis (Bt.) against Meloidogyne incognita. Egyptian Journal of Natural Toxins, 6, 83–93.Google Scholar
  2. Abragan, F. N., Justo, V. P., Abalde, J. A., Minguez, L. T., Salvani, J. B., & Maghanay, C. C., Jr. (2006). Biofumigation for control of bacterial wilt and root-knot diseases in potato. Dalwangan, Malaybalay: PCARRD Commodities.Google Scholar
  3. Aguinaldo, A. M. A., Turbeville, J. M., Linford, L. S., Rivera, M. C., Garey, J. R., Raff, R. A., & Lake, J. A. (1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387, 489–493.PubMedCrossRefGoogle Scholar
  4. Ammati, M., Thomason, I. J., & McKinney, H. E. (1986). Retention of resistance to Meloidogyne incognita in Lycopersicon genotypes at high soil temperature. Journal of Nematology, 18, 491–495.PubMedCentralPubMedGoogle Scholar
  5. Atkinson, H. J., & Hepher, A. (1996). Nematode control with proteinase inhibitors. US5494813 A, Grant, US 08/108,623, PCT/GB1992/000390.Google Scholar
  6. Aumann, J., et al. (1991). Lectin binding to cuticle exudates of sedentary Heterodera schachtii (Nematoda: Heteroderidae) second stage juveniles. Revue de Nématology, 14, c113–c118.Google Scholar
  7. Barker, G. C., & Rees, H. H. (1990). Ecdysteroids in nematodes. Parasitology Today, 12, 384–387.CrossRefGoogle Scholar
  8. Barrett, J., G., Cain, D., & Fairbairn, D. (1970). Sterols in Ascaris lumbricoides (Nematoda), Macracanthorhynchus hirudinaceus and Moniliformis dubius (Acanthocephala) and Echinostoma revolutum (Trematoda). The Journal of Parasitology, 56, 1004–1008.PubMedCrossRefGoogle Scholar
  9. Baum, T. J., Hiatt, A., Parrott, W. A., Pratt, L. H., & Hussey, R. S. (1996). Expression in tobacco of a functional monoclonal antibody specific to stylet secretions of the root-knot nematode. Molecular Plant Microbe, 9, 382–387.CrossRefGoogle Scholar
  10. Bottjer, K. P., Whisenton, L. R., & Weinstein, P. P. (1984). Ecdysteroid-like substances in Nippostrongylus brasiliensis. The Journal of Parasitology, 70, 986–987.PubMedCrossRefGoogle Scholar
  11. Bottjer, K. P., Leon, W., & Sarjeet, S. (1985). Nematode: Susceptibility of the egg to Bacillus thuringiensis toxins. Experimental Parasitology, 60, 239–242.PubMedCrossRefGoogle Scholar
  12. Braun, S. (2000). Production of Bacillus thuringiensis insecticides for experimental uses. In A. Navon & K. R. S. Ascher (Eds.), Bioassays of entomopathogenic microbes and nematodes (pp. 49–72, 342pp.). London: CABIGoogle Scholar
  13. Cai, D., Kleine, M., Kifle, S., & Lange, W. (1997). Positional cloning of a gene for nematode resistance in sugar beet. Science, 275, 832–834.PubMedCrossRefGoogle Scholar
  14. Chitwood, D. (1987). Inhibition of steroid or hormone metabolism or action in nematodes. In J. A. Veech & D. W. Dickson (Eds.), Vistas on nematology (pp. 122–130; 509 pp). Hyattsville: Society of Nematologists Inc.Google Scholar
  15. Chitwood, D. J. (1999). Biochemistry and function of nematode steroids. Critical Review of Biochemistry and Molecular Biology, 34, 273–284.CrossRefGoogle Scholar
  16. Chitwood, D. J., Lozano, R., & Lusby, W. R. (1986). Recent developments in nematode steroid biochemistry. Journal of Nematology, 18, 9–17.PubMedCentralPubMedGoogle Scholar
  17. Chitwood, D. J., McClure, M. A., Feldlaufer, M. F., Lusby, W. R., & Tames, E. (1987). Sterol composition and ecdysteroid content of eggs of the root-knot nematodes, Meloidogyne incognita and M. arenaria. Journal of Nematology, 19(3), 352–360.PubMedCentralPubMedGoogle Scholar
  18. Chung, W.-L., Parish, E. J., & Bone, L. W. (1986). Sex steroid content and metabolism in Trichostrongylus colubriformis (Nematoda). The Journal of Parasitology, 72(326), 1986.Google Scholar
  19. Cole, R. J., & Krusberg, L. R. (1967). Sterol composition of the nematodes Ditylenchus triformis and Ditylenchus dipsaci, and host tissues. Experimental Parasitology, 21, 232–239.PubMedCrossRefGoogle Scholar
  20. Cronin, D., Moenne-Loccoz, Y., Fenton, A., Dunne, C., Dowling, D. N., & O’gara, F. (1997). Role of 2,4-diacetylphloroglucinol in the Interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode, Globodera rostochiensis. Applied and Environmental Microbiology, 63, 1357–1361.PubMedCentralPubMedGoogle Scholar
  21. El-Nagdi, W. M., & Youssef, M. M. (2004). Soaking faba bean seed in some bio-agents as prophylactic treatment for controlling Meloidogyne incognita root-knot nematode infection. Journal of Pest Science, 77, 75–78.CrossRefGoogle Scholar
  22. Fermin-Munoz, G. A. (2000). Plantbodies: An animal strategy imported to the plant kingdom to fight back pathogens. APSnet Features. doi: 10.1094/APSnetFeatures-2000-0500D.Google Scholar
  23. Fodor, A., Deak, P., & Kiss, I. (1982). Competition between juvenile hormone antagonist precocene II and juvenile hormone analog: Methoprene in the nematode C. elegans. General and Comparative Endocrinology, 46, 99–109.PubMedCrossRefGoogle Scholar
  24. Fuller, V. L., Lilley, C. J., & Urwin, P. E. (2008). Nematode resistance. New Phytologist, 180, 27–44.PubMedCrossRefGoogle Scholar
  25. Garabedian, S., & Van Grundy, S. D. (1983). Use of avermectins for the control of Meloidogyne incognita on tomatoes. Journal of Nematology, 15, 503–510.PubMedCentralPubMedGoogle Scholar
  26. Gheysen, G., van der Eycken, W., Barthels, N., Karimi, M., & Van Montagu, M. (1996). The exploitation of nematode-responsive plant genes in novel nematode control methods. Pesticide Science, 47, 95–101.CrossRefGoogle Scholar
  27. Gibbs, W. W. (1997). Biotechnology – Plantibodies. Scientific American, 277, 44.PubMedCrossRefGoogle Scholar
  28. Goddijn, O. J. M., Lindsey, K., van der Lee, F. M., Klap, J. C., & Sijmon, P. C. (1993). Differential gene expression in nematode-induced feeding structures of transgenic plants harboring promoter-gusA fusion constructs. Plant Journal, 4, 863–873.PubMedCrossRefGoogle Scholar
  29. Green, J., Wang, D., Lilley, C. J., Urwin, P. E., & Atkinson, H. J. (2012). Transgenic potatoes for potato cyst nematode control can replace pesticide use without impact on soil quality. PLoS ONE, 7, 1371.Google Scholar
  30. Halbrendt, J. M. (1996). Allelopathy in the management of plant parasitic nematodes. Journal of Nematology, 28, 8–14.PubMedCentralPubMedGoogle Scholar
  31. Hitcho, P. J., & Thorson, R. E. (1971). Possible molting and maturation controls in Trichinella spiralis. The Journal of Parasitology, 57, 787–793.PubMedCrossRefGoogle Scholar
  32. Hooley, R. (1998). Auxin signaling: Homing in with targeted genetics. Plant Cell, 10, 1581–1583.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Jansson, R. K., & Rabatin, S. (1997). Curative and residual efficacy of injection applications of avermectins for control of plant-parasitic nematodes on Banana. Journal of Nematology, 29, 695–702.PubMedCentralPubMedGoogle Scholar
  34. Kaplan, D. T., & Davis, E. L. (1991). A bioassay to estimate root penetration by nematodes. Journal of Nematology, 23, 446–450.PubMedCentralPubMedGoogle Scholar
  35. Kirkegaard, J. (2000). Evaluating biofumigation for soil-borne disease management in tropical vegetable production. Australian Centre for International Agricultural Research. Project no. SMCN/2000/114.Google Scholar
  36. Lewis, J. A., & Papavizas, G. C. (1975). Survival and multiplication of soil-borne plant pathogens as affected by plant tissue amendments. In G. W. Brueh (Ed.), Biology and control of soil-borne plant pathogens (pp. 84–89). St. Paul: APS.Google Scholar
  37. Liley, C. J., & Atkinson, H. J. (1997). Promoters for control of root- feeding nematodes. UK patenting application No. 9524395.2.Google Scholar
  38. Lord, J. S., Lazzeri, L., Atkinson, H. J., & Urwin, P. E. (2011). Biofumigation for control of pale potato cyst nematodes: activity of brassica leaf extracts and green manures on Globodera pallida in vitro and in soil. Journal of Agricultural Food Chemistry, 59, 7882–7890.PubMedCrossRefGoogle Scholar
  39. Lozano, R., Chitwood, D. J., Lusby, W. R., Thompson, M. J., Svoboda, J. A., & Patterson, G. W. (1984). Comparative effects of growth inhibitors on sterol metabolism in the nematode Caenorhabditis elegans. Comparative Biochemistry and Physiology, 79, 21–26.Google Scholar
  40. Lozano, R., Lusby, W. R., Chitwood, D. J., Thompson, M. J., & Scoboda, J. A. (1985). Inhibition of C28 and C29 phytosterol metabolism by N, N-dimethyldodecanamine in the nematode, Caenorhabditis elegans. Lipids, 20, 158–166.PubMedCrossRefGoogle Scholar
  41. Marban-Mendoza, N., Jeyaprakash, A., Jansson, H. B., Damon, R. A., Jr., & Zuckerman, B. M. (1987). Control of root-knot nematodes on tomato by lectins. Journal of Nematology, 19, 331–335.PubMedCentralPubMedGoogle Scholar
  42. Marroquin, L. D., Elyassnia, D., Griffitts, J. S., Feitelson, J. S., & Aroian, R. V. (2000). Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics, 155, 1693–1699.PubMedCentralPubMedGoogle Scholar
  43. Mc Carter, J. P. (2008). Molecular approaches toward resistance to plant-parasitic nematodes. Plant Cell Monograph, 10, 1007–1032.Google Scholar
  44. Meyer, S. L. F., Halbrendt, J. M., Carta, L. K., Skantar, A. M., Liu, T., Abdelnabby, H. M. E., & Vinyard, B. T. (2009). Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes. Journal of Nematology, 41, 274–280.PubMedCentralPubMedGoogle Scholar
  45. Ness, W. R., & Mackean, M. L. (1977). Biochemistry of steroids and other isopentenoids. Baltimore: University Park Press.Google Scholar
  46. Nyczepir, A. P., Beckman, T. G., & Reighard, G. L. (1999). Reproduction and development of Meloidogyne incognita and M. javanica on Guardian peach rootstock. Journal of Nematology, 31, 334–340.PubMedCentralPubMedGoogle Scholar
  47. Orcutt, D. M., Fox, J. A., & Jake, C. A. (1978). The sterol, fatty acid, and hydrocarbon composition of Globodera solanacearum. Journal of Nematology, 10, 264–269.PubMedCentralPubMedGoogle Scholar
  48. Patterson, G. W. (1984). Comparative effects of growth inhibitors on sterol metabolism in the nematode Caenorhabditis elegans. Comparative Biochemistry & Physiology Pharmacology Toxicology and Endocrinology, 79(1), 21–26.CrossRefGoogle Scholar
  49. Peumans, W. J., & Van Damme, E. J. M. (1995). Lectins as plant defense proteins. Plant Physiology, 109, 347–352.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Prasad, C. S., Gupta, S., & Tiwari, M. D. (2011). Protein-protein docking of serine proteinase of nematodes with plant proteinase inhibitors. Journal of Natural Science Biology and Medicine, 2, 62–63.Google Scholar
  51. Rogers, W. P. (1973). Juvenile and moulting hormones from nematodes. Parasitology, 67, 105–113.CrossRefGoogle Scholar
  52. Rushton, P. J., Somssich, I. E., Ringler, P., & Shen, Q. J. (2010). WRKY transcription factors. Trends in Plant Science, 15, 247–258.PubMedCrossRefGoogle Scholar
  53. Schots, A., De Boer, J., Scgoutn, A., Roosien, J., Zil Verentant, J. F., Pomp, H., Bouwman-Smits, L., Overmars, H., Gommers, F. J., Visser, B., Stiekema, W. J., & Bakker, J. (1992). Plantibodies’: A flexible approach to design resistance against pathogens. Netherlands Journal of Plant Pathology. doi: 10.1007/BF01974485.Google Scholar
  54. Silberkang, M., Havel, C. M., Friend, D. S., McCarthy, B. J., & Watson, J. A. (1983). Isoprene synthesis in isolated embryonic Drosophila cells. I. Sterol-deficient eukaryotic cells. The Journal of Biological Chemistry, 258, 8503.PubMedGoogle Scholar
  55. Sirohi, A., Pankaj, & Ganguly, A. K. (2010). Novel nematode management strategies. Indian Journal of Nematology, 40, 135–144.Google Scholar
  56. Soriano, I. R., Riley, I. T., Potter, M. J., & Bowers, W. S. (2004). Phytoecdysteroids: a novel defense against plant-parasitic nematodes. Journal of Chemical Ecology, 30, 1885–1899.PubMedCrossRefGoogle Scholar
  57. Svoboda, J. A., & Chitwood, D. J. (1992). Inhibition of sterol metabolism in insects and nematodes. In Regulation of isopentenoid metabolism (ACS symposium series, Vol. 497, pp. 205–218). American Chemical Society: Washington.Google Scholar
  58. Taylor, C. G., Hresko, M. C., Jez, J. M., McCarter, J. P., Schubert, K., Shortt, B., & Williams, D. I. (2008). Development of methods for control of parasitic nematode. United States Environmental Protection Agency Grant No. X832282.Google Scholar
  59. Trudgill, D. L. (1991). Resistance to and tolerance of plant parasitic nematodes in plants. Annual Review of Phytopathology, 29, 167–193.CrossRefGoogle Scholar
  60. Urwin, P. E., Levesley, A., McPherson, M. J., & Atkinson, H. J. (2000). Transgenic resistance to the nematode Rotylenchulus reniformis conferred by Arabidopsis thaliana plants expressing proteinase inhibitors. Molecular Breeding, 6, 257–264.CrossRefGoogle Scholar
  61. Urwin, P. E., Lilley, C. J., & Atkinson, H. J. (2002). Ingestion of double-stranded RNA by pre-parasitic juvenile cyst nematodes leads to RNA interference. Molecular Plant-Microbe Interactions, 15, 747–752.PubMedCrossRefGoogle Scholar
  62. Vrain, T. C. (1999). Engineering natural and synthetic resistance for nematode management. Journal of Nematology, 31, 424–436.PubMedCentralPubMedGoogle Scholar
  63. Wei, J. Z., Hale, K., Carta, L., Platezer, E., Wong, E., Fanq, S. C., & Aroian, R. V. (2003). Bacillus thuringiensis crystal proteins that target nematodes. Proceedings of the National Academy of Sciences of the United States of America, 100, 2760–2765.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Willet, J. D. (1980). Control mechanisms in nematodes. In B. M. Zuckerman (Ed.), Nematodes as biological models (Vol. 1, pp. 197–225). New York: Academic.Google Scholar
  65. Williamson, V. M. (1998). Root-knot nematode resistance genes in tomato and their potential for future use. Annual Review of Phytopathology, 36, 277–293.PubMedCrossRefGoogle Scholar
  66. Wuyts, N. A., Elsen, E., van Damme, D., de Waele, R., Swennen, R., & Sági, L. (2001). Lectin binding to the banana-parasitic nematode Radopholus similis. In S. M. Jain & R. Swennen (Eds.), Banana improvement: Cellular, molecular biology, and induced mutations. Enfield: Science Publishers, Inc.Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • N. G. Ravichandra
    • 1
  1. 1.AICRP (Nematodes) Department of Plant PathologyUniversity of Agricultural SciencesBangaloreIndia

Personalised recommendations