Advertisement

Nematological Techniques

  • N. G. Ravichandra
Chapter

Abstract

It is difficult to detect a nematode damage merely on the basis of visible symptoms. Without a proper diagnosis, suitable nematode management schedule cannot be designed. Identifying a nematode problem comprises various steps, viz., drawing of suitable samples of soil and plant parts from the infested field, processing the samples to extract nematodes, separating and identifying specific parasitic species of the phytonematode based on morphological criteria, preparation of mounts, staining plant tissues to observe endoparasitic nematodes, etc. Some of the major techniques commonly adapted in plant nematology are furnished hereunder.

Keywords

Advance Very High Resolution Radiometer Advance Very High Resolution Radiometer Crop Loss Nematode Population Methyl Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Barker, K. R. (1985). The application of microplot techniques in nematological research. In K. R. Barker & C. C. Carter (Eds.), An advanced treatise on meloidogyne, vol. I – Methodology (pp. 127–134, 223pp). Raleigh: North Carolina State University Graphics.Google Scholar
  2. Barker, K. R., & Olthof, T. H. A. (1976). Relationships between nematode population densities and crop responses. Annual Review of Phytopathology, 14, 327–353.CrossRefGoogle Scholar
  3. Barker, K. R., Townshend, J. L., & Michell, R. E. (1978). Determining nematode population responses to control agents. In Methods for evaluation plant fungicides, nematicides and bactericides (pp. 114–125, 141pp.). St Paul: The American Phytopathological Society.Google Scholar
  4. Barker, K. R., Schmidtt, D. P., & Imbriani, J. L. (1985). Nematode population dynamics with emphasis on determining damage potential to crops. In K. R. Barker, C. C. Carter, & J. N. Sasser (Eds.), An advanced treatise on meloidogyne: Vol. 2. Methodology (pp. 135–148). Raleigh: North Carolina State University Graphics.Google Scholar
  5. Barker, K. R., Gooding, G. V., Elder, A. S., & Eplee, R. E. (1972). Killing and preserving nematodes in soil samples with chemicals and microwave energy. Journal of Nematology, 4, 75–79.PubMedCentralPubMedGoogle Scholar
  6. Bhatti, D. S. (1988). Utilization of toxic plants for the control of nematode pests of economic crops. Final technical report (231pp). Hisar: Haryana Agricultural University.Google Scholar
  7. Blakeman, R. H. (1990). The identification of crop disease and stress by aerial photography. In M. D. Steven & J. A. Clark (Eds.), Applications of remote sensing in agriculture. London: Butterworths.Google Scholar
  8. Bridge, J. (1985). A technique for cryo-preservation of viable juveniles of M. graminicola. Nematologica, 31, 185–187.CrossRefGoogle Scholar
  9. Bunt, J. A. (1975). Effect and mode of action of some systemic nematicides (Technical Bulletin, 127pp.). Wageningen: Department of Nematology, Agricultural University.Google Scholar
  10. Burleigh, J. R., Roelfs, A. P., & Eversmeyer, M. G. (1972). Estimating damage to wheat caused by Puccinia recondite tritici. Phytopathology, 62, 944–946.CrossRefGoogle Scholar
  11. Byrd, D. W. Jr., Kirkpatrick, T., & Barker, K. R. (1983). An improved technique for clearing and staining plant tissue for detection of nematodes. Journal of Nematology, 14, 142–143.Google Scholar
  12. Chiarappa, L. (1981). Crop loss assessment methods. Slough: FAO/CAB.Google Scholar
  13. Cobb, N. A. (1918). One hundred new nemas (Type species of 100 new genera). Contribution to a Science of Nematology, (9), 217–343.Google Scholar
  14. Daykin, M. E., & Hussey, R. S. (1985). Staining and histopathological techniques in Nematology. In K. R Barker & C. C. Carter (Eds.), An advanced treatise on meloidogyne, vol. I – Methodology (pp. 39–48, 223pp.). Raleigh: North Carolina State University Graphics.Google Scholar
  15. Doncaster, C. C. (1962). Sealing microscopical water mounts with soft wax. Nematologica, 7, 2588.Google Scholar
  16. Epstein, A. H. (1975, August 19–21). The role of remote sensing in preventing world hunger. In Proceedings of the fifth biennial workshop on color aerial photography in the plant sciences and related fields EROS Data Center, Sioux Falls, South Dakota (pp. 61–65). Sioux Falls: American Society of Photogrammetry.Google Scholar
  17. Feder, N., & O’Brien, T. P. (1968). Plant microtechnique: Some principles and new methods. American Journal of Botany, 55, 123–142.CrossRefGoogle Scholar
  18. Fenwick, D. W. (1940). Methods for the recovery and counting of cysts of Heterodera schactii from soil. Journal of Helminthology, 18, 155–172.CrossRefGoogle Scholar
  19. Ferris, H., & Duncan, L. W. (1980). Consideration of edaphic factors in quantifying nematode stress on plant growth. Journal of Nematology, 12, 220.Google Scholar
  20. Ferris, H. (1978). Nematode economic thresholds: Derivation, requirements, and theoretical considerations. Journal of Nematology, 10, 341–350.PubMedCentralPubMedGoogle Scholar
  21. Ferris, H. (1980). Plant-parasitic nematode distributions in an alfalfa field. Journal of Nematology, 12, 164–170.Google Scholar
  22. Ferris, H. (1981). Mathematical approaches to the assessment of crop damage (Plant parasitic nematodes, Vol. 111). London: Academic.Google Scholar
  23. Franklin, M. T., & Goody, J. B. (1949). A cotton blue- lactophenol technique for mounting plant parasitic nematodes. Journal of Helminthology, 22, 175–178.CrossRefGoogle Scholar
  24. Godfrey, G. H. (1929). A destructive root disease of pineapples and other plants due to Tylenchus brachyurus n.sp. Phytopathology, 19, 611–629.Google Scholar
  25. Godfrey, G. H. (1935). A method of estimating the degree of nematode infestation. Soil Science, 38, 3–27.CrossRefGoogle Scholar
  26. Hafez, S. L., & Pudasaini, M. P. (2012, November 8). Sample the soil: Managing nematode populations. Potato Grower.Google Scholar
  27. Heller, R. C. (1978). Case applications of remote sensing for vegetation damage assessment. Photogrammetric Engineering and Remote Sensing, 44, 1159–1166.Google Scholar
  28. Hendricks, D. E. (1980). Low frequency sodar device that counts flying insects attracted to sex pheromone dispensers. Environmental Entomology, 9, 452–457.Google Scholar
  29. Hills, F. J., Chiarappa, L., & Geng, S. (1980). Powdery mildew of sugarbeet: Disease and crop loss assessment. Phytopathology, 70, 680–682.CrossRefGoogle Scholar
  30. Hooper, D. J. (1970). Drawing and measuring nematodes. In J. F. Southey (Ed.), Methods for work with plant and soil nematodes (Technical bulletin 2, pp. 59–65, 148pp.). London: Ministry of Agriculture, Fisheries and Food, Her Majesty’s Stationary Office.Google Scholar
  31. Hooper, D. J. (1990). Extraction and processing of plant and soil nematodes. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant parasitic nematodes in Subtropical and tropical Agriculture (pp. 45–68, 629pp.). Wallingford: CAB International Institute of Parasitology.Google Scholar
  32. Hooper, D. J. (1970). Drawing and measuring nematodes In J. F. Southey (Ed.), Methods for work with plant and soil nematodes (Technical bulletin 2, pp. 59–65, 148pp.). London: Ministry of Agriculture, Fisheries and Food, Her Majesty’s Stationary Office.Google Scholar
  33. James, W. C. (1974). Assessment of plant disease and losses. Annual Review Phytopathology, 12, 27–48.CrossRefGoogle Scholar
  34. James, W. C., & Teng, P. S. (1979). The quantification of production constraints associated with plant diseases. Applied Biology, 4, 201–267.Google Scholar
  35. Johnson, A. W. (1978). Test materials and environmental conditions for field evaluation of nematode control agents. In Methods for evaluation plant fungicides, nematicides and bactericides (pp. 106–108, 141pp.). The American Phytopathological Society.Google Scholar
  36. Killebrew, F. (1999). Nematode control in the garden through solarization, Bull (7pp). Mississippi: Mississippi State University Extension Service.Google Scholar
  37. Lin, C. S., Poushinsky, G., & Mauer, M. (1979). An examination of five sampling methods under random and clustered disease distribution using simulation. Canadian Journal of Plant Science, 59, 121–130.CrossRefGoogle Scholar
  38. Lindow, S. E., & Webb, R. R. (1983). Quantification of foliar plant disease symptoms by microcomputer designed video image analysis. Phytopathology, 73, 520–524.CrossRefGoogle Scholar
  39. Madden, L. V., Pennyspacker, S. P., Antle, C. E., & Kingsolver, C. H. (1981). A loss model for crops. Phytopathology, 71, 685–689.CrossRefGoogle Scholar
  40. Manzer, F. E., & Cooper, G. R. (1982). Use of a portable videotaping for aerial infrared detection of potato diseases. Plant Disease, 66, 665–667.CrossRefGoogle Scholar
  41. Mc Beth, C. W., Taylor, A. L., & Smith, A. L. (1941). Note on staining nematodes in root tissue. Proceedings of the Helminthological Society of Washington, 8, 26.Google Scholar
  42. Minderman, G. (1956). Aims and methods in population researches on soil-inhabiting nematodes. Nematologica, 1, 47–50.CrossRefGoogle Scholar
  43. Nageswara Rao, P. P., Jayaraman, V., & Chandrasekhar, M. G. (1991). Applications of remote sensing in plant protection. Technical Bulletin National Natural Resources Management System, Indian Space Research Organization, 1–2pp.Google Scholar
  44. Oostenbrink, M. (1960). Estimating nematode populations by some selected methods. In J. N. Sasser & W. R. Jenkins (Eds.), Nematology (pp. 85–102). Chapel Hill: University of North Carolina Press.Google Scholar
  45. Oostenbrink, M. (1966). Major characteristics of the relation between nematodes and plants. Meded Landbouwhogeschool Wageningen, 66, 1–46.Google Scholar
  46. Ravichandra, N. G. (2010). Methods and techniques in plant nematology (595 pp). New Delhi: Prentice Hall of India Publications.Google Scholar
  47. Reid, E. (1955). A rolling method for opening cysts of potato eel worm. Plant Pathology, 4, 28–29.CrossRefGoogle Scholar
  48. Romig, R. W., & Calpouroz, L. (1970). The relationship between stem rust and loss in yield of spring wheat. Phytopathology, 60, 1801–1805.CrossRefGoogle Scholar
  49. Schneider, R. W., Williams, R. J., & Sinclair, J. B. (1976). Cercospora leaf spot of cowpea: models for estimating yield loss. Phytopathology, 66, 384–388.CrossRefGoogle Scholar
  50. Seinhorst, J. W. (1950). De betekensis van de toestand van de grond voor het optreden van aantasting door het stengelaaltje (Ditylenchus dipsaci (Kuhn) Filipjev). Tijdschr PlZiekt, 56, 289–348.Google Scholar
  51. Seinhorst, J. W. (1962). Modifications of the elutriation methods for extracting nematodes from soil. Nematologica, 8, 117–128.CrossRefGoogle Scholar
  52. Seinhorst, J. W. (1965). The relation between nematode density and damage to plants. Nematologica, 11, 137–154.CrossRefGoogle Scholar
  53. Seinhorst, J. W. (1966). The relationships between population increase and population density in plant-parasitic nematodes. I. Introduction and migratory nematodes. Nematologica, 12, 157–169.CrossRefGoogle Scholar
  54. Seinhorst, J. W. (1970). Dynamics of populations of plant parasitic nematodes. Annual Review of Phytopathology, 8, 131–156.Google Scholar
  55. Seinhorst, J. W. (1981). Growth and yield of oats at a range of Heterodera avenae densities and under different watering regimes. Nematologia, 27, 52–71.CrossRefGoogle Scholar
  56. Southards, C. J. (1965). Host parasite relations of the lesion nematode, Pratylenchus brachyurus, P.zeae and P.scribneri and flue-cured tobacco, Ph.D. thesis. Raleigh: North Carolina State University, 101pp.Google Scholar
  57. Southey, J. F. (1970). Laboratory methods for work with plant and soil nematodes (Technical bulletin 2, 148pp). London: Ministry of Agriculture, Fisheries and Food, Her Majesty’s Stationary Office.Google Scholar
  58. Southey, J. F. (1986). Laboratory methods for work with plant and soil nematodes (Ministry of Agriculture, Fisheries and Food Reference Book No. 402, 202 pp). London: HMSO.Google Scholar
  59. Steele, A. E. (1978). Tests for nematicidal efficacy using larvae of Heterodera schachtii. In Methods for evaluation plant fungicides, nematicides and bactericides (pp. 105–108, 141pp.). Minnesota: The American Phytopathological Society.Google Scholar
  60. Stynes, B. A. (1975). A synoptic study of wheat. Ph.D. thesis, University of Adelaide, South Australia, 214pp.Google Scholar
  61. Stynes, B. A., Wallace, H. R., & Veitch, L. G. (1979). A synoptic approach for crop loss assessment used to study wheat. I. An approach of the physical and chemical soil properties in the study area. Australian Journal of Soil Research, 17, 217–225.Google Scholar
  62. Taylor, A. L., & Sasser, J. N. (1978). Experimental and agronomic use of nematicides (International Meloidogyne Project). Raleigh: North Carolina State University.Google Scholar
  63. Teng, P. S. (1981). Data recording and processing for crop loss models. In L. Chiarappa (Ed.), Crop loss assessment methods-supplement 3 (pp. 105–109). FAO/CAB, Slough.Google Scholar
  64. Teng, P. S., & Gaunt, R. E. (1981). Modeling systems of disease and yield of loss in cereals. Agricultural Systems, 6, 131–154.CrossRefGoogle Scholar
  65. Teng, P. S., & Gaunt, R. E. (1985). Modeling systems of disease and yield loss in cereals. Agricultural Systems, 6, 131–1541.CrossRefGoogle Scholar
  66. Teng, P. S., & Montgomery, P. R. (1982). RUSTMAN: A portable, microcomputer based economic decision model for sweet corn common rust control (Abstr.). Phytopathology, 72, 1140.Google Scholar
  67. Thirugnanam, M. (1978). Evaluation of nematicides for systemic eradication of root-knot nematodes. In Methods for evaluation plant fungicides, nematicides and bactericides (pp. 103–104, 141pp.). The American Phytopathological Society.Google Scholar
  68. Timmer, L. W., & Davis, R. M. (1982). Estimate of yield loss from the citrus nematode in Texas grapefruit. Journal of Nematology, 14, 582–585.PubMedCentralPubMedGoogle Scholar
  69. Townshend, J. L., & Potter, J. W. (1980). Population behavior of Meloidogyne hapla under four forage legumes in microplots. Canadian Journal of Plant Science, 60, 293–294.CrossRefGoogle Scholar
  70. Trudgill, D. L. (1992). Resistance to and tolerance of plant-parasitic nematodes in plants. Annual Review of Phytopathology, 29, 167–192.CrossRefGoogle Scholar
  71. Trudgill, D. L., & Phillips, M. S. (2006). Resistance to and tolerance of plant-parasitic nematodes in plants. Annual Review of Phytopathology, 29, 167–192.CrossRefGoogle Scholar
  72. Ulaby, F. T., & Moore, R. K. (1973). Radar spectral measurements of vegetation (RSL Technical Report, pp. 177–240). Lawrence: Univ. Kansas Centre for Research Inc.Google Scholar
  73. Vander Plank, J. E. (1963). Plant diseases: Epidemics and control (349pp). London: Academic Press.Google Scholar
  74. Wehunt, E. J. (1973). Sodium-containing detergents enhance the extraction of nematodes. Journal of Nematology, 5, 79–80.PubMedCentralPubMedGoogle Scholar
  75. Zacheo, B. (1987). Stimulation of respiratory pathways in tomato roots infested by Meloidogyne incognita. Nematologica Mediterranean, 15, 235–251.Google Scholar
  76. Zadoks, J. C. (1983). An integrated disease and pest management scheme, EPIPRE, for wheat. In Better crops for food (Ciba Foundation Symposium 97, pp. 116–129). London: Pitman Books.Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • N. G. Ravichandra
    • 1
  1. 1.AICRP (Nematodes) Department of Plant PathologyUniversity of Agricultural SciencesBangaloreIndia

Personalised recommendations