Genetics of Nematode Parasitism

  • N. G. Ravichandra


It is well known that various genetic factors influence the host plant and either turn it into a resistant to the nematode pest or enable the nematode to overcome the resistance of the host plant (Sidhu and Webster 1981). Most notably, all phytonematodes are equipped with a stylet to pierce cell walls and allow solute exchange between plant and parasite. Furthermore, plant-parasitic nematodes have well-developed secretory gland cells associated with their esophagus that produce secretions released through the stylet into host tissues. Interestingly, the development of enlarged secretory cells associated with the esophagus also exists in nematode parasites of animals but is notably absent from microbivorous nematodes like C. elegans. In the case of the root-knot nematodes and cyst nematodes, as is the case with the other tylenchid phytonematodes, there are three esophageal glands, one dorsal and two subventral glands.


Horizontal Gene Transfer Cyst Nematode Soybean Cyst Nematode Parasitism Gene Potato Cyst Nematode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andersson, J. O. (2005). Lateral gene transfer in eukaryotes. Cellular and Molecular Life Sciences, 62, 1182–1197.PubMedCrossRefGoogle Scholar
  2. Arguel, M.-J., Jaouannet, M., Magliano, M., Abad, P., & Rosso, M.-N. (2012). SiRNAs trigger efficient silencing of a parasitism gene in plant parasitic root-knot nematodes. Genes, 3, 391–408.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Aumann, J. (1993). Chemosensory physiology of nematodes. Fundamental and Applied Nematology, 16, 193–198.Google Scholar
  4. Aumann, J. (1994). The chemical nature of the amphidial and excretory system secretion of Heterodera schachtii males. Fundamental and Applied Nematology, 17, 186–189.Google Scholar
  5. Aumann, J., & Wyss, U. (1989). Histochemical studies on exudates of Heterodera schachtii males. Revue de Nematologie, 12, 309–315.Google Scholar
  6. Atibalentja, N., Bekal, S., Domier, L. L., Niblack, T. L., Noel, G. R., & Lambert, K. N. (2005). A genetic linkage map of the soybean cyst nematode Heterodera glycines. Molecular Genetics and Genomics, 273, 273–281.PubMedCrossRefGoogle Scholar
  7. Bakhetia, M., Charlton, W., Atkinson, H. J., & McPherson, M. (2005). RNA interference of dual oxidase in the plant nematode Meloidogyne incognita. Molecular Plant-Microbe Interactions, 18, 1099–1106.PubMedCrossRefGoogle Scholar
  8. Baldi, C., Cho, S., & Ellis, R. E. (2009). Mutations in two independent pathways are sufficient to create hermaphroditic nematodes. Science, 326, 1002–1005.PubMedCrossRefGoogle Scholar
  9. Baldwin, J. G., Nadler, S. A., & Adms, B. J. (2004). Evolution of plant parasitism among nematodes. Annual Review of Phytopathology, 42, 83–105.PubMedCrossRefGoogle Scholar
  10. Baum, T. J., Husse, R. S., & Davis, E. L. (2007). Root – Knot and cyst nematode parasitism genes: The molecular basis of plant parasitism. Genetic Engineering, 28, 17–43.PubMedCrossRefGoogle Scholar
  11. Bird, A. F. (1971). Specialized adaptation of nematodes to parasitism. In B. M. Zuckerman, W. F. Mai, & R. A. Rohde (Eds.), Plant parasitic nematodes (Vol. II, pp. 35–49). New York: Academic.Google Scholar
  12. Bird, D. M. K., & Koltai, H. (2000). Plant parasitic nematodes: Habitats, hormones, and horizontally-acquired genes. Journal of Plant Growth Regulation, 19, 183–194.PubMedGoogle Scholar
  13. Bird, D. M., DiGennaro, P. M., Scholl, E. H., Imin, N., Djordjevic, M. A., Goshe, M. B., Williamson, V., & Opperman, C. H. (2012). Bioactive plant peptide hormone mimics encoded within parasitic nematode genomes. Plant and Animal Genome XX Conference, San Diego.Google Scholar
  14. Blanchard, A., Esquibet, M., Fouville, D., & Grenier, E. (2005). Ranbpm homologue genes characterized in the cyst nematodes Globodera pallida and Globodera mexicana. Physiological and Molecular Plant Pathology, 67, 15–22.CrossRefGoogle Scholar
  15. Blaxter, M. L. (2003). Nematoda: genes, genomes and the evolution of parasitism. Advances in Parasitology, 54, 101–195.PubMedCrossRefGoogle Scholar
  16. Blaxter, M. L., De Ley, P., Garey, J. R., Liu, L. X., Scheldeman, P., Vierstraete, A., Vanfleteren, J. R., Mackey, L. Y., Dorris, M., Frisse, L. M., Vida, J. T., & Thomas, W. K. (1998). A molecular evolutionary framework for the phylum Nematoda. Nature, 392, 71–75.PubMedCrossRefGoogle Scholar
  17. Boucher, G., & Lambshead, P. J. D. (1994). Ecological biodiversity of marine nematodes in samples from temperate, tropical, and deep-sea regions. Conservation Biology, 9, 1594–1604.CrossRefGoogle Scholar
  18. Branch, C., Hwang, C. F., Navarre, D. A., & Williamson, V. M. (2004). Salicylic acid is part of the Mi-1-mediated defense response to root-knot nematode in tomato. Molecular Plant-Microbe Interactions, 17, 351–356.PubMedCrossRefGoogle Scholar
  19. Cai, D., Kleine, M., Kifle, S., & Lange, W. (1997). Positional cloning of a gene for nematode resistance in sugar beet. Science, 275, 832–834.PubMedCrossRefGoogle Scholar
  20. Castagnone-Sereno, R. E., Wajnberg, M., Bongiovanni, F. L., & Dalmasso, A. (1994). Free-living nematodes and their effects on seedlings of the hardwood Afzelia africana Sm. Pedobiologia, 46, 176–187.Google Scholar
  21. Creutz, C. E., Snyder, S. L., Daigle, S. N., & Redick, J. (1996). Identification, localization, and functional implications of an abundant nematode annexin. The Journal of Cell Biology, 132, 1079–1092.PubMedCrossRefGoogle Scholar
  22. Daigle, S. N., & Creutz, C. E. (1999). Transcription, biochemistry and localization of nematode annexins. Journal of Cell Science, 112, 1901–1913.PubMedGoogle Scholar
  23. Danchin, É. G. J. (2011). What nematode genomes tell us about the importance of horizontal gene transfers in the evolutionary history of animals. Mobile Genetics Elements, 1, 269–292.CrossRefGoogle Scholar
  24. Danchin, E. G., Rosso, M. N., Vieira, P., de Almeida-Engler, J., & Coutinho, P. M. (2010). Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proceedings of the National Academy of Sciences of the United States of America, 107, 17651–17656.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Davis, E. L. (2000). Nematode parasitism genes. Annual Review of Phytopathology, 36, 365–396.CrossRefGoogle Scholar
  26. Davis, E. L., Haegeman, A., & Kikuchi, T. (2011). Degradation of the plant cell wall by nematodes. In J. Jones, G. Gheysen, & C. Fenoll (Eds.), Genomics and molecular genetics of plant-nematode interactions (pp. 255–272). Dordrecht: Springer.Google Scholar
  27. Davis, E. L., Hussey, R. S., Baum, T. J., Bakker, J., Schots, A., Rosso, M.-N., & Abad, P. (2000a). Nematode parasitism genes. Annual Review of Phytopathology, 38, 365–396.PubMedCrossRefGoogle Scholar
  28. Davis, E. L., Hussey, R. S., Baum, T. J., Bakker, J., Schots, A., Rosso, M. N., & Abad, P. (2000b). Nematode parasitism genes. Annual Review Phytopathology, 38, 341–372.CrossRefGoogle Scholar
  29. Davis, E. L., Hussey, R. S., & Thomas, J. B. (2004). Getting to the roots of parasitism by nematodes. Trends in Parasitology, 20, 134–141.PubMedCrossRefGoogle Scholar
  30. Davis, E. L., Hussey, R. S., & Baum, T. J. (2008). Parasitism genes: What they reveal about parasitism. Plant Cell Monographs, 15, 15–44. doi: 10.1007/7089.CrossRefGoogle Scholar
  31. de Boer, J. M., Yitang Yan, Xiaohong Wang, Smant, G., Hussey, R. S., Davis, E. L., & Baum, T. J. (1999). Developmental expression of secretory β-1,4-endoglucanases in the subventral esophageal glands of Heterodera glycines. The American Phytopathological Society MPMI, 12, 663–669.Google Scholar
  32. De Ilarduya, O. M., Moore, A. E., & Kaloshian, I. (2001). The tomato Rme1 locus is required for Mi-1-mediated resistance to root-knot nematodes and the potato aphid. The Plant Journal, 27, 417–425.PubMedCrossRefGoogle Scholar
  33. De Ley, P., & Blaxter, M. (2002). Systematic position and phylogeny. In D. L. Lee (Ed.), The biology of nematodes (pp. 1–30). London: Taylor & Francis.CrossRefGoogle Scholar
  34. De Meutter, J., Tytgat, T., Witters, E., Gheysen, G., Van Onckelen, H., & Gheyesen, G. (2003). Identification of cytokinins produced by the plant parasitic nematodes Heterodera schachtii and Meloidogyne incognita. Molecular Plant Pathology, 14, 271–277.CrossRefGoogle Scholar
  35. Dieterich, C., & Sommer, R. J. (2009). How to become a parasite: Lessons from the genomes of nematodes. Trends in Genetics, 25, 203–209.PubMedCrossRefGoogle Scholar
  36. Dimalla, G. G., & Van Staden, J. (1977). Cytokinins in the root-knot nematode, Meloidogyne incognita. Plant Science Letters, 10, 25–29.CrossRefGoogle Scholar
  37. Ding, X., Shields, J. P., Allen, R. I., & Hussey, R. S. (1998). A secretory cellulase-binding protein cDNA cloned from the root-knot nematode (Meloidogyne incognita). Molecular Plant-Microbe Interactions, 11, 952–959.PubMedCrossRefGoogle Scholar
  38. Dong, K., & Opperman, C. H. (1997). Genetic analysis of parasitism in the soybean cyst nematode Heterodera glycine. Genetics, 146, 1311–1318.PubMedCentralPubMedGoogle Scholar
  39. Dong, K., Barker, K. R., & Opperman, C. H. (1997). Genetics of soybean – Heterodera glycines interaction. Journal of Nematology, 29, 509–522.PubMedCentralPubMedGoogle Scholar
  40. Dorris, M., De Ley, P., & Blaxter, M. L. (1999). Molecular analysis of nematode diversity and the evolution of parasitism. Parasitology Today, 15, 188–193.PubMedCrossRefGoogle Scholar
  41. Doyle, E. A., & Lambert, K. N. (2002). Cloning and characterization of an esophageal-gland-specific pectate lyase from the root-knot nematode, Meloidogyne javanica. Molecular Plant-Microbe Interactions, 15, 549–556.PubMedCrossRefGoogle Scholar
  42. Doyle, E. A., & Lambert, K. N. (2003). Meloidogyne javanica chorismate mutase 1 alters plant cell development. Bulletin: The American Phytopathological Society, MPMI, 16, 123–131.Google Scholar
  43. Duncan, L. H. (1995). An investigation of the secretions of the potato cyst nematode, Globodera pallida. PhD thesis, University of Glasgow: UK.Google Scholar
  44. Eberhardt, A. G., Mayer, W. E., & Streit, A. (2007). The free-living generation of the nematode Strongyloides papillosus undergoes sexual reproduction. International Journal of Parasitology, 37, 989–1000.PubMedCrossRefGoogle Scholar
  45. Ehlers, J. D., Matthews, W. C., Hall, A. E., & Roberts, P. A. (2000). Inheritance of a broad-based form of root-knot nematode resistance in cowpea. Crop Science, 40, 611–618.CrossRefGoogle Scholar
  46. Ellingboe, A. H. (1984). Genetics of host-parasite relations: An essay. Advances in Plant Pathology, 2, 131–151.Google Scholar
  47. Ellis, J., & Jones, D. (1998). Structure and function of proteins controlling strain-specific pathogen resistance in plants. Current Opinion in Plant Biology, 1, 288–293.PubMedCrossRefGoogle Scholar
  48. Fudali, S., Sobczakand, M., & Golinowski, W. (2008). Expansins are among plant cell wall modifying agents specifically expressed during development of nematode-induced syncytia. Plant Signaling & Behavior, 3, 969–971.Google Scholar
  49. Gao, B., Allena, R., Maierb, T., Davisc, E. L., Baumb, T. J., & Hussey, R. S. (2001a). Molecular characterisation and expression of two venom allergen-like protein genes in Heterodera glycines. International Journal of Nematology, 31, 1617–1625.Google Scholar
  50. Gao, B., Allen, R., Maier, T., Davis, E. L., Thomas, J. B., & Hussey, R. S. (2001b). Identification of putative parasitism genes expressed in the esophageal gland cells of the soybean cyst nematode, Heterodera glycines. Molecular Plant-Microbe Interactions, 14(10), 1247–1254.PubMedCrossRefGoogle Scholar
  51. Gao, B. L., Allen, R., Maier, T., Davis, E. L., Baum, T. J., & Hussey, R. S. (2003). The parasitome of the phytonematode Heterodera glycines. Molecular Plant-Microbe Interactions, 16, 720–726.PubMedCrossRefGoogle Scholar
  52. Gheysen, G., & Fenoll, C. (2002). Gene expression in nematode feeding sites. Annual Review of Phytopathology, 40, 124–168.CrossRefGoogle Scholar
  53. Goverse, A., Kavelaars, A., Smant, G., Schots, A., Bakker, J., & Helder, J. (1999). Naturally induced secretions of the potato cyst nematode co-stimulate the proliferation of both tobacco leaf protoplasts and human peripheral blood mononuclear cells. Molecular Plant-Microbe Interactions, 12, 872–881.PubMedCrossRefGoogle Scholar
  54. Goyal, K., Walton, L. J., Browne, J. A., Burnell, A. M., & Tunnacliffe, A. (2005). Molecular anhydrobiology: Identifying molecules implicated in invertebrate anhydrobiosis. Integrative and Comparative Biology, 45, 702–709.PubMedCrossRefGoogle Scholar
  55. Grant, W. N., Stasiuk, S., Newton-Howes, J., Ralston, M., & Bisset, S. A. (2006). Parastrongyloides trichosuri, a nematode parasite of mammals that is uniquely suited to genetic analysis. International Journal of Parasitology, 36, 453–466.PubMedCrossRefGoogle Scholar
  56. Greenbaum, D., Luscombe, N. M., Jansen, R., Qian, J., & Gerstein, M. (2001). Interrelating different types of genomic data from proteome to secretome: ‘Homing’ in function. Genome Research, 11, 1463–1468.PubMedCrossRefGoogle Scholar
  57. Griesser, M., & Grundler, F. M. W. (2013). Quantification of tomato expansins in nematode feeding sites of cyst and root-knot nematodes. Journal of Plant Diseases and Protection, 120, 129–137.Google Scholar
  58. Henrissat, B., & Bairoxh, A. (1996). Updating the sequence based classification of glycosyl hydrolases. Biochemistry Journal, 316, 695–696.Google Scholar
  59. Hertz, N. B., & Mattiasson, B. (1979). Action of a nematode-trapping fungus shows lectin-mediated host–microorganism interaction. Nature, 281, 477–479.CrossRefGoogle Scholar
  60. Hewezi, T., Howe, P., Maier, T. R., Hussey, R. S., Mitchum, M. G., Davis, E. L., & Baum, T. J. (2008). Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: Cooperative cell wall modification during parasitism. The Plant Cell Online, 20, 3080–3093.CrossRefGoogle Scholar
  61. Hirano, Y., Murata, S., & Tanaka, K. (2005). Large- and small-scale purification of mammalian 26S proteasomes. Methods in Enzymology, 399, 227–240.PubMedCrossRefGoogle Scholar
  62. Huang, G., Gao, B., Maier, T., Davis, E. L., Baum, T. J., & Hussey, R. S. (2002). Identification of putative parasitism genes expressed in the esophageal gland cells of Meloidogyne incognita. Nematology, 4, 220.Google Scholar
  63. Huang, G., Gao, B., Maier, T., Allen, R., Davis, E. L., Baum, T. J., & Hussey, R. S. (2003). A profile of putative parasitism genes expressed in the oesophageal gland cells of the root-knot nematode, Meloidogyne incognita. Molecular Plant-Microbe Interactions, 16, 376–381.PubMedCrossRefGoogle Scholar
  64. Huang, G., Dong, R., Allen, R., Davis, E. L., Baum, T. J., & Hussey, R. S. (2005). Two chorismate mutase genes from the root-knot nematode Meloidogyne incognita. Molecular Plant Pathology, 6, 23–30.PubMedCrossRefGoogle Scholar
  65. Huang, G., Dong, R., Allen, R., Davis, E. L., Baum, T. J., & Hussey, R. S. (2006). A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Molecular Plant-Microbe Interactions, 19, 463–470.PubMedCrossRefGoogle Scholar
  66. Hussey, R. S. (1989). Disease-inducing secretions of plant-parasitic nematodes. Annual Review of Phytopathology, 27, 123–141.CrossRefGoogle Scholar
  67. Hussey, R. S., & Grundler, F. M. (1998). Nematode parasitism of plants. In R. N. Perry & D. J. Wright (Eds.), Physiology and biochemistry of free living and plant parasitic nematodes (pp. 213–243). Wallingford: CAB International Press. 438 pp.Google Scholar
  68. Hussey, R. S., Davis, E. L., & Baum, T. J. (2002a). Secrets in secretions: genes that control nematode parasitism of plants. Brazilian Journal of Plant Physiology, 14, 183–194.CrossRefGoogle Scholar
  69. Hussey, R. S., Davies, E. L., & Baum, T. J. (2002b). Agroforestry. In M. Van Noordwijk, G. Cadisch, & C. K. Ong (Eds.), Below-ground interactions in tropical agroecosystems: Concepts and models with multiple plant components (pp. 263–283). Wallingford: CABI.Google Scholar
  70. Hussey, R. S., Guozhong Huang, & Allen, R. (2011). Microaspiration of esophageal gland cells and cDNA library construction for identifying parasitism genes of plant-parasitic nematodes. Methods in Molecular Biology, 712, 89–107.PubMedCrossRefGoogle Scholar
  71. Janssen, R., Bakker, J., & Gommers, F. J. (1991). Mendelian proof for a gene for-gene relationship between Globodera rostochiensis and the H1 resistance gene from Solanum tuberosum spp. andigena CPC 1673. Revue Nematologie, 14, 213–219.Google Scholar
  72. Jansson, H. B., & Nordbring-Hertz, B. (1983). The endoparasitic fungus Meria coniospora infects nematodes specifically at the chemosensory organs. Journal of General Microbiology, 129, 1121–1126.Google Scholar
  73. Jaouannet, M., Magliano, M., Arquel, M. J., Gourgues, M., Evangelist, E., Abad, P., & Rosso, M. N. (2013). The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense suppression. Molecular Plant-Microbe Interactions, 26, 97–105.PubMedCrossRefGoogle Scholar
  74. Jaubert, S., Ledger, T. N., Laffaire, J. B., Piotte, C., Abad, P., & Rosso, M. N. (2002). Direct identification of stylet secreted proteins from root-knot nematodes by a proteomic approach. Molecular and Biochemical Parasitology, 121, 205–211.PubMedCrossRefGoogle Scholar
  75. Jaubert, S., Milac, A. L., Petrescu, A. J., de Almeida-Engler, J., Abad, P., & Rosso, M. N. (2005). In planta secretion of a calreticulin by migratory and sedentary stages of root-knot nematode. Molecular Plant-Microbe Interactions, 18, 1277–1284.PubMedCrossRefGoogle Scholar
  76. Johnsen, R. C., & Baillie, D. L. (1997). Mutation. In D. L. Riddle, T. Blumenthal, B. J. Meyer, & J. R. Priess (Eds.), C. elegans II (pp. 79–95). Cold Spring Harbor: Laboratory Press.Google Scholar
  77. Jones, H. A., & Danchin, E. G. (2011). Horizontal gene transfer in nematodes: A catalyst for plant parasitism? Molecular Plant Microbe Interactions, 24, 879–887.PubMedCrossRefGoogle Scholar
  78. Jones, J. T., Furlanetto, C., Bakker, E., Banks, B., Blok, V., Chen, Q., Phillips, M., & Prior, A. (2003). Characterization of a chorismate mutase from the potato cyst nematode, Globodera pallida. Molecular Plant Pathology, 4, 43–50.PubMedCrossRefGoogle Scholar
  79. Jones, J. T., Reavy, B., Smant, G., & Prior, A. (2002). Glutathione peroxidases of the potato cyst nematode Globodera rostochiensis. Gene, 324, 47–54.PubMedCrossRefGoogle Scholar
  80. Kang, J. S., Koh, Y. H., Moon, Y. S., & Lee, S. H. (2012). Molecular properties of a venom allergen-like protein suggest a parasitic function in the pinewood nematode, Bursaphelenchus xylophilus. International Journal of Parasitology, 42, 63–70.PubMedCrossRefGoogle Scholar
  81. Karaka, M. (2008). RNA interference in plant parasitic nematodes. African Journal of Biotechnology, 7, 2530–2534.Google Scholar
  82. Kishor, K. B., Liu, Y., Savithramma, D. K., & Isgouhi Kaloshian, P. A. N. D. (2007). The Mi-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiology, 144, 312–323.CrossRefGoogle Scholar
  83. Kobe, B., & Deisenhofer, J. (1995). A structural basis of the interaction between leucine-rich repeats and protein ligands. Nature, 374, 183–186.PubMedCrossRefGoogle Scholar
  84. Koboldt, D. C., Staisch, J., Thillainathan, B., Haines, K., & Baird, S. E. (2010). A toolkit for rapid gene mapping in the nematode, Caenorhabditis briggsae. BMC Genomics, 11, 236.PubMedCentralPubMedCrossRefGoogle Scholar
  85. Lambert, K. N., Allen, K. D., & Sussex, I. M. (1999). Cloning and characterization of an esophageal-gland-specific chorismate mutase from the phytoparasitic nematode Meloidogyne javanica. Molecular Plant-Microbe Interactions, 12, 328–336.PubMedCrossRefGoogle Scholar
  86. Lima, L. M., Grossi-de-Sa, M. F., Pereira, R. A., & Curtis, R. H. C. (2005). Immunolocalisation of secreted-excreted products of Meloidogyne spp. using polyclonal and monoclonal antibodies. Fitopatologia Brasileira, 30, 629–633.CrossRefGoogle Scholar
  87. Shifeng Lin, Jian, H., Zhao, H., Yang, D., & Liu, Q. (2011). Cloning and characterization of a venom allergen-like protein gene cluster from the pinewood nematode Bursaphelenchus xylophilus. Experimental Parasitology, 127, 440–447.PubMedCrossRefGoogle Scholar
  88. Lohar, D. P., Schaff, J. E., Laskey, J. G., Kieber, J. J., Bilyeu, K. D., & Bird, D. M. (2004). Cytokinins play opposite roles in lateral root formation, and nematode and rhizobial symbioses. The Plant Journal, 38, 203–214.PubMedCrossRefGoogle Scholar
  89. Lozano, J., Wilbers, R., Gawronski, P., van Agtmaal, M., Overmars, H., van’t Klooster, J., de Wit, P., Goverse, A., Bakker, J., & Smant, G. (2009). A nematode venom allergen protein interacts with a cathepsin-like cysteine protease in the host and is required for plant parasitism (Abstract). Paper presented at XIV international congress on Molecular plant-microbe interactions during July 19–23, 2009, Quebec City, Canada.Google Scholar
  90. Lozano Torres, J. L., Wilbers, R. H. P., Warmerdam, S., Finkers-Tomczak, A. M., Schaik, C. C. van Overmars, H. A., Bakker, J., Goverse, A., Schots, A., & Smant, G. (2013, October). Secreted venom allergen-like proteins of plant-parasitic nematodes modulate defence responses in host plants (p. 32). Proceedings of the first annual meeting, COST FA 1208, 09-111, Birnam, Scotland.Google Scholar
  91. Mayer, W. E., Schuster, L. N., Bartelmes, G., Dieterich, C., & Sommer, R. J. (2011). Horizontal gene transfer of microbial cellulases into nematode genomes is associated with functional assimilation and gene turnover. BMC Evolutionary Biology, 11, 13.PubMedCentralPubMedCrossRefGoogle Scholar
  92. Mitreva, M., Smart, H., & Helder, J. (2009). Role of horizontal gene transfer in the evolution of plant parasitism among nematodes. Methods in Molecular Biology, 532, 517–535.PubMedCrossRefGoogle Scholar
  93. Mundo-Ocampo, M., & Baldwin, J. G. (1992). Comparision of host response of Ekphymatodera thomasoni with other heteroderinae. Fundamentals of Applied Nematology, 15, 63–70.Google Scholar
  94. Nahar, K., Kyndt, T., De Vleesschauwer, D., Höfte, M., & Gheysen, G. (2011). The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiology, 157, 305–316.PubMedCentralPubMedCrossRefGoogle Scholar
  95. Ngangbam, A. K., & Devi, N. B. (2012). An approach to the parasitism genes of the root knot nematode. ESci Journal of Plant Pathology, 1, 1–4.Google Scholar
  96. Lu Shunwen, Yu Hang, & Wang Xiahong. (2013). Molecular characterization and functional analysis of venom allergen-like protein genes in the potato cyst nematode, Globodera rostochiensis. Biological Integrated Pest Management Unit, Research Project, USDA.Google Scholar
  97. Ochman, H., Lawrence, J. C., & Groisman, E. A. (2001). Lateral gene transfer and the nature of bacterial innovation. Nature, 405, 290–304.Google Scholar
  98. Opperman, C. H., & Bird, D. M. K. (1998). The soybean cyst nematode, Heterodera glycines: A genetic model system for the study of plant-parasitic nematodes. Current Opinion in Plant Biology, 1, 342–346.PubMedCrossRefGoogle Scholar
  99. Opperman, C. H., Bird, D. M., Williamson, V. M., Rokhsar, D. S., Burke, M., Cohn, J., Cromer, J., Diener, S., Gajan, J., Graham, S., Houfek, T. D., Liu, Q., Mitros, T., Schaff, J., Schaffer, R., Scholl, E., Sosinski, B. R., Thomas, V. P., & Windham, E. (2008). Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proceedings of the National Academy of Sciences of the United States of America, 105, 14802–14807.PubMedCentralPubMedCrossRefGoogle Scholar
  100. Patel, N., Hamamouch, N., Li, C., Hewezi, T., Hussey, R. S., Baum, T. J., Mitchum, M. G., & Davis, E. L. (2010). A nematode effector protein similar to annexins in host plants. Journal of Experimental Botany, 61, 235–248.PubMedCentralPubMedCrossRefGoogle Scholar
  101. Perry, R. N. (2001). Observations on the response of the dorsal and subventral oesophageal glands of Globodera rostochiensis to hatching stimulation. Review of Nematology, 12, 91–96.Google Scholar
  102. Popeijus, H., Overmars, H., Jones, J., Blok, V., Goverse, A., Helder, J., Schots, A., Bakker, J., & Smant, G. (2000). Degradation of plant cell walls by a nematode. Nature, 406, 36–37.PubMedCrossRefGoogle Scholar
  103. Qin, L. (2004). An efficient cDNA-AFLP-based strategy for the identification of putative pathogenicity factors from the potato cyst nematode Globodera rostochiensis. Molecular Plant-Microbe Interactions, 13, 830–836.CrossRefGoogle Scholar
  104. Qin, L., Smant, G., Bakker, J., & Helder, J. (2002). The identity and function of cyst nematode-secreted proteins in pathogenesis. In S. A. Leong, C. Allen, & E. Tripplet (Eds.), Biology of plant-microbe interactions (Vol. 3, pp. 212–216). St. Paul: APS Press.Google Scholar
  105. Roberts, P. A., Dalmasso, A., Cap, G. B., & Castagnone Sereno, P. (1990). Resistance in Lycopersicon peruvianum to isolates of Mi gene-compatible Meloidogyne populations. Journal of Nematology, 22, 585–589.PubMedCentralPubMedGoogle Scholar
  106. Romero, R. M., Roberts, M. F., & Phillipson, J. D. (1995). Chorismate mutase in microorganisms and plants. Phytochemistry, 40, 1015–1025.CrossRefGoogle Scholar
  107. Rouppe van der Voort, J. N., van Eck, H. J., van Zandvoort, P. M., Overmars, H., Helder, J., & Bakker, J. (1999). Linkage analysis by genotyping of sibling populations: A genetic map for the potato cyst nematode constructed using a “pseudo-F2” mapping strategy. Molecular and General Genetics, 261, 1021–1031.PubMedCrossRefGoogle Scholar
  108. Schlager, B., Wang, X., Braach, G., & Sommer, R. J. (2009). Molecular cloning of a dominant roller mutant and establishment of DNA-mediated transformation in the nematode Pristionchus pacificus. Genesis, 47, 300–304.PubMedCrossRefGoogle Scholar
  109. Scholl, E. H., Thorne, J. L., McCarter, J. P., & Bird, D. M. (2003). Horizontally transferred genes in plant-parasitic nematodes: A high-throughput genomic approach. Genome Biology, 4, 39.CrossRefGoogle Scholar
  110. Semblat, J.-P., Rosso, M.-N., Hussey, R. S., Abad, P., & Castagnone-Sereno, P. (2001). Molecular cloning of a cDNA encoding an amphid-secreted putative avirulence protein from the root-knot nematode, Meloidogyne incognita. Molecular Plant-Microbe Interactions, 14, 72–79.PubMedCrossRefGoogle Scholar
  111. Sidhu, G. S., & Webster, J. M. (1981). The genetics of plant-nematode parasitic systems. The Botanical Review, 47, 387–419.CrossRefGoogle Scholar
  112. Smant, G., Stokkermans, J. P. W. G., Yan, Y., De Boer, J. M., Baum, T. J., Wang, X., Hussey, R. S., Gommers, F. J., Henrissat, B., Davis, E. L., Helder, J., Shots, A., & Bakker, J. (1998). Endogenous cellulases in animals: Isolation of b-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proceedings of the National Academy of Sciences USA, 95, 4906–4911.CrossRefGoogle Scholar
  113. Smith, P. G. (1944). Embryo culture of a tomato species hybrid. Proceedings of the American Society for Horticultural Science, 44, 413–416.Google Scholar
  114. Spiegel, Y. A., & McClure, M. A. (1995). The surface coat of plant-parasitic nematodes: Chemical composition, origin, and biological role—A review. Journal of Nematology, 27, 127–134.PubMedCentralPubMedGoogle Scholar
  115. Stasiuk, S. J., Scott, M. J., & Grant, W. N. (2012). Developmental plasticity and the evolution of parasitism in an unusual nematode, Parastrongyloides trichosuri. EvoDevo, 3, 1.PubMedCentralPubMedCrossRefGoogle Scholar
  116. Stone, A. R. (1985). Co-evolution of [potato cyst nematode and their hosts: Implications for pathotypes and resistance. OEPP/PPO Bulletin, 15, 131–137.CrossRefGoogle Scholar
  117. Sturhan, D. (1985). Untersuchungen über den Xiphinema coxi Komplex (Nematoda: Longidoridae). Nematologica, 30, 275–337.Google Scholar
  118. Triantaphyllou, A. C. (1986). Genetics of nematode parasitism on plants. In J. A. Veech & D. W. Dickson (Eds.), Vistas on nematology (p. 354; 509 pp). Hyattsville: Society of Nematologists.Google Scholar
  119. Triantaphyllou, A. C. (1987). Genetics of nematode parasitism of plants. In J. A. Veech & D. W. Dickson (Eds.), Vistas on nematology (pp. 354–363; 509 pp). Hyattsville: Society of Nematologists.Google Scholar
  120. Veronico, P., Jones, J., Di Vito, M., & De Giorgi, C. (2001). Horizontal transfer of a bacterial gene involved in polyglutamate biosynthesis to the plant-parasitic nematode Meloidogyne artiellia. FEBS Letters, 508, 470–474.PubMedCrossRefGoogle Scholar
  121. Viney, M. E., Green, L. D., Brooks, J. A., & Grant, W. N. (2002). Chemical mutagenesis of the parasitic nematode Strongyloides ratti to isolate ivermectin resistant mutants. International Journal of Parasitology, 32, 1677–1682.PubMedCrossRefGoogle Scholar
  122. Wang Xiaohong. (2011). Mechanisms of CLE peptide mimicry in plant-cyst nematode interactions (Annual Report). Ithaca: Biological Integrated Pest Management Unit, USDA.Google Scholar
  123. Wang, J., & Kim, S. K. (2003). Global analysis of dauer gene expression in Caenorhabditis elegans. Development, 130, 1621–1634.PubMedCrossRefGoogle Scholar
  124. Wang, X., & Sommer, R. J. (2011). Antagonism of LIN-17/Frizzled and LIN-18/Ryk in nematode vulva induction reveals evolutionary alterations in core developmental pathways. PLoS Biology, 9(7), 100–110.CrossRefGoogle Scholar
  125. Wang, Z., Zhou, X. E., Motola, D. L., Gao, X., & Suino-Powell, K. (2009). Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proceedings of the National Academy of Sciences of the United States of America, 106, 9138–9143.PubMedCentralPubMedCrossRefGoogle Scholar
  126. Weerasinghe, R., Bird, D. M., & Allen, N. S. (2005). Root-knot nematodes and bacterial Nod factors elicit common signal transduction events in Lotus japonicus. Proceedings of the National Academy of Sciences, 102, 3147–3152.CrossRefGoogle Scholar
  127. Weller, A. M., Mayer, W. E., Rae, R., & Sommer, R. J. (2010). Quantitative assessment of the nematode fauna present on geotrupes dung beetles reveals species-rich communities with a heterogeneous distribution. The Journal of Parasitology, 96, 525–531.PubMedCrossRefGoogle Scholar
  128. Wieczorek, K., Golecki, B., Gerdes, L., Heinen, P., Szkastis, D., Durachko, D. M., Cosqrove, D. J., Kreil, D. P., Puzio, P. S., Bohlmann, H., & Grundler, F. M. (2006). Expansins are involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana. The Plant Journal, 48, 98–112.PubMedCrossRefGoogle Scholar
  129. Williamson, V. M. (1999). Plant nematode resistance genes. Current Opinion in Plant Biology, 2, 327–331.PubMedCrossRefGoogle Scholar
  130. Williamson, V. M., & Kumar, A. (2006). Nematode resistance in plants: The battle underground. Trends in Genetics, 22, 396–403.PubMedCrossRefGoogle Scholar
  131. Williamson, V. M., Ho, J. Y., Wu, F. F., Miller, N., & Kaloshian, I. (1994). A PCR-based marker tightly linked to the nematode resistance gene, Mi in tomato. Theory and Applied Genetics, 87, 757–763.CrossRefGoogle Scholar
  132. Yan, Y., Smant, G., Stokkermans, J., Qin, L., Helder, J., Baum, T., Schots, A., & Davis, E. (1998). Genomic organization of four β-1,4-endoglucanase genes in plant-parasitic cyst nematodes and its evolutionary implications. Gene, 220, 61–70.PubMedCrossRefGoogle Scholar
  133. Zacheo, G., Orlando, C., & Bleve-Zacheo, T. (1993). Characterization of anionic peroxidases in tomato isolines infected by Meloidogyne incognita. Journal of Nematology, 25, 249–256.PubMedCentralPubMedGoogle Scholar
  134. Zioni Cohen-Nissan, S., Glazer, I., & Segal, D. (1992). Phenotypic and genetic analysis of a mutant of Heterorhabditis bacteriophora strain HP88. Journal of Nematology, 24, 359–364.PubMedCentralPubMedGoogle Scholar
  135. Zvelebil, M. J., Tang, L., Cookson, E., Selkirk, M. E., & Thornton, J. M. (1993). Molecular modeling and epitope prediction of gp29 from lymphatic filariae. Molecular and Biochemical Parasitology, 58, 145–153.PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • N. G. Ravichandra
    • 1
  1. 1.AICRP (Nematodes) Department of Plant PathologyUniversity of Agricultural SciencesBangaloreIndia

Personalised recommendations