Case Study

  • Ruma Pal
  • Avik Kumar Choudhury


Several reports are available from different ecological niche. An important example is the Mediterranean region where most of the water bodies represent oligotrophic condition. Many works have concentrated on the Eastern Mediterranean Sea, an extreme oligotrophic environment (Krom et al. 2003) at the far end of a prominent west–east with increasing oligotrophy gradient (Turley et al. 2000). This ultra-oligotrophic condition is testified by high light penetrance (Berman et al. 1984a; Ignatiades 1998); low nutrient concentrations; very low values for phytoplankton; primary productivity and cell abundance (Sournia 1973; Berman et al. 1984a, b; Dowidar 1984; Azov 1986; Bonin et al. 1989; Psarra et al. 2000; Christaki et al. 2001), with a dominance of small-size phytoplankton (Li et al. 1993; Yacobi et al. 1995; Ignatiades 1998; Ignatiades et al. 2002); and outstandingly low bacterial abundance and production (Robarts et al. 1996). Several groups from the Mediterranean countries have worked on the phytoplankton species composition and productivity from the Eastern Mediterranean region. Assessments of the trophic status of habitat by application of empirical indices, statistical analysis and other analytical methods have drawn significant attention from different groups of plankton biologists from this region. Such characterization have been carried out in the Adriatic region using the OECD statistical methodology by Vollenweider and Kerekes (1982) as well as by Vollenweider et al. (1998). Similar assessments were also performed from selected areas of the Aegean Sea (Saronikos Gulf, Island of Rhodes, Mytilini Island) with the use of nutrient and/or phytoplankton species data and the application of statistical analyses (Ignatiades et al. 1992; Stefanou et al. 2000), ecological indices (Karydis and Tsirtsis 1996) and simulation modelling (Tsirtis 1995).


Gross Primary Productivity Dissolve Inorganic Nitrogen Phytoplankton Population Principal Component Analysis Plot Dissolve Inorganic Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ayukai, T. (1992). Picoplankton dynamics in Davies Reef lagoon, the Great Barrier Reef, Australia. Journal of Plankton Research, 14, 1593–1606.CrossRefGoogle Scholar
  2. Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Mayer-Reil, L. A., & Thingstad, T. (1983). The ecological role of water-column microbes in the sea. Marine Ecology Progress Series, 10, 257–263.CrossRefGoogle Scholar
  3. Azov, Y. (1986). Seasonal patterns of phytoplankton productivity and abundance in nearshore oligotrophic waters of the Levant Basin (Mediterranean). Journal of Plankton Research, 8(1), 41–53.CrossRefGoogle Scholar
  4. Badylak, S., & Phlips, E. J. (2004). Spatial and temporal patterns of phytoplankton composition in a subtropical lagoon, the Indian River Lagoon, Florida, USA. Journal of Plankton Research, 26, 1229–1247.CrossRefGoogle Scholar
  5. Berman, T., Azov, Y., & Townsand, D. W. (1984a). Understanding oligotrophic oceans: Can the Eastern Mediterranean be a useful model? In O. Holm-Hansen, L. Bolis, & R. Gilles (Eds.), Marine phytoplankton and productivity, lecture notes on coastal and estuarine studies (Vol. 8, pp. 101–111). Berlin: Springer.Google Scholar
  6. Berman, T., Townsand, D. W., El-sayed, S. Z., Trees, C. C., & Azov, Y. (1984b). Optical transparency, chlorophyll and primary productivity in the Eastern Mediterranean near the Israeli Coast. Oceanologica Acta, 7(3), 367–372.Google Scholar
  7. Bonin, D. J., Bonin, M. C., & Berman, T. (1989). Mise en evidence experimentale des facteurs nutritifs limitants de la productiondu microplancton et de l’ultraplancton dans une eau cotierede la mediterranee orientale. Aquatic Sciences, 51, 129–152.CrossRefGoogle Scholar
  8. Børsheim, K. Y., & Bratbak, G. (1987). Cell volume to cell carbo conversion factors for a bacterivorous Monas sp. enriched from seawater. Marine Ecology Progress Series, 36, 171–175.CrossRefGoogle Scholar
  9. Bradford-Grieve, J. M., Boyd, P. W., Chang, F. H., Chiswell, S., Hadfield, M., Hall, J. A., James, M. R., Nodder, S. D., & Shushkina, E. A. (1999). Pelagic ecosystem structure and functioning in the subtropical front region east of New Zealand in austral winter and spring 1993. Journal of Plankton Research, 21(3), 405–428.CrossRefGoogle Scholar
  10. Brussaard, C. P. D., Gast, G. J., van Duyl, F. C., & Riegman, R. (1996). Impact of phytoplankton bloom magnitude on a pelagic microbial food web. Marine Ecology Progress Series, 144, 211–221.CrossRefGoogle Scholar
  11. Caron, D. A., Peele, E. R., Lim, E. L., & Dennett, M. R. (1999). Picoplankton and nanoplankton and their trophic coupling in surface waters of the Sargasso Sea south of Bermuda. Limnology and Oceanography, 44, 259–272.CrossRefGoogle Scholar
  12. Caroppo, C. (2000). The contribution of picophytoplankton to community structure in a mediterranean brakish environment. Journal of Plankton Research, 22, 381–397.CrossRefGoogle Scholar
  13. Christaki, U., Van Wambeke, F., & Dolan, J. R. (1999). Nanoflagellates (mixotrophs, heterotrophs and autotrophs) in the oligotrophic eastern Mediterranean: Standing stocks, bacterivory and relationships with bacterial production. Marine Ecology Progress Series, 181, 297–307.CrossRefGoogle Scholar
  14. Christaki, U., Giannakourou, A., Van Wambeke, F., & Gregori, G. (2001). Nanoflagellate predation on auto- and heterotropic picoplankton in the oligotrophic Mediterranean Sea. Journal of Plankton Research, 23, 1297–1310.CrossRefGoogle Scholar
  15. Cupp, E. E. (1943). Marine plankton diatoms of the west coast of North America (Bulletin of the Scripps Institute of Oceanography, pp. 1–237). Berkeley/Los Angeles: University of California Press.Google Scholar
  16. Curl, H. C., Jr. (1959). The phytoplankton of Apalachee Bay and the Northeastern Gulf of Mexico. Publications of the Institute of Marine Science, 6, 311–320.Google Scholar
  17. Dangeard, P. A. (1902). Euglena flava. Le Botaniste, 8, 180, pl 5.Google Scholar
  18. Dam, H. G., & Peterson, W. T. (1988). The effect of temperature on the gut clearance rate constant of planktonic copepods. Journal of Experimental Marine Biology and Ecology, 123, 1–14.CrossRefGoogle Scholar
  19. De, T. K., Ghosh, S. K., Choudhury, A., & Jana, T. K. (1994). Plankton community organization and species diversity in the Hugli estuary, north east coast of India. Indian Journal of Marine Sciences, 23(3), 152–156.Google Scholar
  20. De Jonge, V. N., & van Beusekom, J. E. E. (1995). Wind- and tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary. Limnology and Oceanography, 40, 766–778.CrossRefGoogle Scholar
  21. Desikachary, T. V. (1959). Cyanophyta. New Delhi: IARI.Google Scholar
  22. Dowidar, N. M. (1984). Phytoplankton biomass and primary productivity of the south-eastern Mediterranean. Deep-Sea Research, 31(6–8A), 983–1000.CrossRefGoogle Scholar
  23. Foged, N. (1979). Diatoms in New Zealand. The North Island (Bibliotheca Phycologica, Band 47). Vaduz: J. Cramer.Google Scholar
  24. Gopalakrishnan, P. (1972). Studies on marine planktonic diatoms off Port Okha in the Gulf of Kutch. Phykos, 12, 37–49.Google Scholar
  25. Gopalakrishnan, V. V., & Sastry, J. S. (1985). Surface circulation over the shelf off the coast of India during the southwest monsoon. Indian Journal of Marine Sciences, 14, 62–66.Google Scholar
  26. Gregory, W. (1857). On new forms of marine Diatomaceae found in the Firth of Clyde and in Loch Fyne, illustrated by numerous figures drawn by R.K. Greville, LL.D., F.R.S.E.. Transactions of the Royal Society of Edinburgh, 21, 473–542, pl. 9–14.Google Scholar
  27. Ha, K., Hyun-Woo, K., & Gea-Jae, J. (1998). The phytoplankton succession in the lower part of hypertrophic Nakdong River (Mulgum), South Korea. Hydrobiologia, 369–370, 217–227.CrossRefGoogle Scholar
  28. Hangovan, G. (1987). A comparative study on species diversity distribution and ecology of Dinophyceae from Vellar estuary and nearby Bay of Bengal. Journal of the Marine Biological Association of India, 29(1–2), 280–285.Google Scholar
  29. Hernandez-Becerril, D. U. (1987). Vertical distribution of phytoplankton in the central and northern part of the Gulf of California (June 1982). PS.Z.N.I. Marine Ecology, 8(3), 237–251.CrossRefGoogle Scholar
  30. Hinga, K. R. (2002). Effects of pH on coastal marine phytoplankton. Marine Ecology Progress Series, 238, 281–300.CrossRefGoogle Scholar
  31. Hustedt, F. (1930a). Bacillariophyta (Diatomee). In A. Pascher’s Die Süsswasser – Flora Mitteleuropa. Jena: Gustav Fisher.Google Scholar
  32. Hustedt, F. (1930b, 1931, 1932). Die Kieselalgen in Dr. L. Rabenhorst’s Kryptogamen Flora von Deutschlands, Osterreichs und der Schweiz, bd. 7, Teil 1, Teil 2, Lief. pp. 1–4.Google Scholar
  33. Ignatiades, L. (1998). The productive and optical status of the oligotrophic waters of the Southern Aegean Sea (Cretan Sea), Eastern Mediterranean. Journal of Plankton Research, 20(5), 985–995.CrossRefGoogle Scholar
  34. Ignatiades, L. (2005). Scaling the trophic status of the Aegean Sea, eastern Mediterranean. Journal of Sea Research, 54(1), 51–57.CrossRefGoogle Scholar
  35. Ignatiades, L., Karydis, M., & Vounatsou, P. (1992). A possible method for evaluating oligotrophy and eutrophication based on nutrient concentration scales. Marine Pollution Bulletin, 24(5), 238–243.CrossRefGoogle Scholar
  36. Ignatiades, L., Psarra, S., Zervakis, V., Pagou, K., Souvermezoglou, E., Assimakopoulou, G., & Gotsis-Skretas, O. (2002). Phytoplankton size-based dynamics in the Aegean Sea (Eastern Mediterranean). Journal of Marine Systems, 36, 11–28.CrossRefGoogle Scholar
  37. Jacobsen, B. A., & Simonsen, P. (1993). Disturbance events affecting phytoplankton biomass, composition and species diversity in a shallow, eutrophic, temperate lake. Hydrobiologia, 149, 9–14.CrossRefGoogle Scholar
  38. Jerlov, N. G. (1997). Classification of sea water in terms of quanta irradiance. ICES Journal of Marine Science, 37, 281–287.Google Scholar
  39. Jumars, P. A. (1976). Deep sea species diversity: Does it have a characteristic scale? Journal of Marine Research, 34(2), 217–246.Google Scholar
  40. Karydis, M., & Tsirtsis, G. (1996). Ecological indices: A biometric approach for assessing eutrophication levels in the marine environment. Science of the Total Environment, 186, 209–219.CrossRefGoogle Scholar
  41. Kilham, P. (1971). A hypothesis concerning silica and the freshwater planktonic diatoms. Limnology and Oceanography, 16, 10–18.CrossRefGoogle Scholar
  42. Kirchman, D. L. (1993). Leucine incorporation as a measure of biomass production by heterotrophic bacteria. In P. F. Kemp, B. F. Sherr, E. B. Sherr, & J. J. Cole (Eds.), Handbook of methods in aquatic microbial ecology (pp. 509–512). Ann Arbor: Lewis Publishers.Google Scholar
  43. Kommarek, J. (2005). Studies on the cyanophytes (Cyanobacteria, Cyanoprokaryota) of Cuba; (11) Fresh water Anabaena species. Preslia, 77, 211–234.Google Scholar
  44. Krishna Kumari, L., et al. (2002). Primary productivity in Mandovi-Zuari estuaries in Goa. Journal of the Marine Biological Association of India, 44(1&2), 1–13.Google Scholar
  45. Krishnamurthy, V. (2000). Algae of India and neighbouring countries. I. Chlorophycota (pp. 1–125). Oxford & IBH.Google Scholar
  46. Krom, M. D., Brenner, S., Kress, N., Neori, A., & Gordon, L. I. (1993). Nutrient distributions during an annual cycle across a warm-core oceanic eddy from the E. Mediterranean Sea. Deep-Sea Research, 40, 805–825.CrossRefGoogle Scholar
  47. Krom, M. D., Groom, S., & Zohary, T. (2003). The eastern Mediterranean. In K. D. Black & G. B. Shimmield (Eds.), The biogeochemistry of marine systems (pp. 91–126). Oxford: Blackwell.Google Scholar
  48. Lee, S., & Fuhrman, J. A. (1987). Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Applied and Environmental Microbiology, 53, 1298–1303.PubMedCentralPubMedGoogle Scholar
  49. Lemmermann, E. (1904). Das Plankton schwedischer Gewasser. Arkiv för Botanik, 2(2),1–209. Pls. 1, 2. McComb, A. J., & Lukatelich.Google Scholar
  50. Li, K. W., Zohary, T., Yacobi, Y. Z., & Wood, A. M. (1993). Ultraphytoplankton in the eastern Mediterranean Sea: Towards deriving phytoplankton biomass from flow cytometric measurements of abundance, fluorescence and light scatter. Marine Ecology Progress Series, 102, 79–87.CrossRefGoogle Scholar
  51. Livingston, R. J. (Ed.). (2001). Eutrophication processes in coastal systems. Boca Raton: CRC Press.Google Scholar
  52. Madhupratap, M., Gauns, M., Ramaiah, N., Prasanna Kumar, S., Muraleedharan, P. M., de Sousa, S. N., Sardessai, S., & Muraleedharan, U. (2003). Biogeochemistry of the Bay of Bengal: Physical, chemical and primary productivity characteristics of the central and western Bay of Bengal during summer monsoon 2001. Deep-Sea Research Part II, 50, 881–896.CrossRefGoogle Scholar
  53. Mallin, M. A. (1994). Phytoplankton ecology of North Carolina estuaries. Estuaries, 17, 561–574.CrossRefGoogle Scholar
  54. Malone, T. C., Garside, C., & Neale, P. J. (1980). Effects of silicate depletion on photosynthesis by diatoms in the plume of the Hudson River. Marine Biology, 58, 197–204.CrossRefGoogle Scholar
  55. Malone T. C., Pike, S. E., & Conley, D. J. (1993). Transient variations in phytoplankton productivity at JGOFS Bermuda times series station. Deep sea research part 1. Journal of Oceanography, 40(5), 903–924.Google Scholar
  56. Matondkar, S. G. P., Dwivedi, R. M., Parab, S., Pednekar, S., Desa, E. S., Mascarenhas, A., Raman, M., & Singh, S. K. (2006). Satellite and ship studies of phytoplankton in the Northeastern Arabian during 2000–2006 period. Proceedings of SPIE, 6406(64061I) 1–10.Google Scholar
  57. Mazzocchi, M. G., Christou, E., Fragopoulu, N., & Siokou-Frangou, I. (1997). Mesozooplankton distribution from Sicily to Cyprus (Eastern Mediterranean): I. General aspects. Oceanologica Acta, 20(3), 521–535.Google Scholar
  58. Mercado, J. M., Ramírez, T., Cortés, D., Sebastián, M., & Vargas-Yáñez, M. (2005). Seasonal and inter-annual variability of the phytoplankton communities in an upwelling area of the Alborán Sea (SW Mediterranean Sea). Scientia Marina, 69(4), 451–465. doi: 10.3989/scimar.2005.69n4451.CrossRefGoogle Scholar
  59. Nielsen, T. G., & Hansen, B. (1995). Plankton community structure and carbon cycling on the western coast of Greenland during and after the sedimentation of a diatom bloom. Marine Ecology Progress Series, 125, 239–257.CrossRefGoogle Scholar
  60. Nielsen, T. G., Lokkegaard, B., Richardson, K., Pedersen, F. B., & Hansen, L. (1993). Structure of plankton communities in the Dogger Bank area (North Sea) during a stratified situation. Marine Ecology Progress Series, 95, 115–131.CrossRefGoogle Scholar
  61. Padisak, J. (1993). The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia, 249, 135–156.CrossRefGoogle Scholar
  62. Pegler, K., & Kempe, S. (1988). The carbonate system of the North Sea: Determination of alkalinity and TCO2 and calculation of PCO2 and Sical (Spring 1986). Mitt Geol-Paläont Inst, 65, 35–87.Google Scholar
  63. Pochman, A. (1942). Synopsis der Gattung Phacus. Archiv fur Protistenkunde, 95(2), 81–252; Figs.1-170.Google Scholar
  64. Prescott, G. W. (1982). Algae of the great western lakes area (pp. 1–997). Dubuque: W.C. Brown Co.Google Scholar
  65. Psarra, S., Tselepides, A., & Ignatiades, L. (2000). Primary productivity in the oligotrophic Cretan Sea (NE Mediterranean): Seasonal and interannual variability. Progress in Oceanography, 46, 187–204.CrossRefGoogle Scholar
  66. Qasim, S. Z. (1977). Biological productivity of the Indian Ocean. Indian Journal of Marine Sciences, 6, 122–137.Google Scholar
  67. Radhakrishna, K., Devassay, V. P., Bhargava, R. M. S., & Bhattathiri, P. M. A. (1978). Primary production in the northern Arabian Sea. Indian Journal of Marine Sciences, 7, 271–275.Google Scholar
  68. Ramette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiology Ecology, 62, 142–160.PubMedCentralPubMedCrossRefGoogle Scholar
  69. Redekar, P. D., & Wagh, A. B. (2000). Planktonic diatoms of the Zuari estuary, Goa (west coast of India). Seaweed Research and Utilization Association, 22(1&2), 107–112.Google Scholar
  70. Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46(3), 205–221.Google Scholar
  71. Reynolds, C. S. (1984). The ecology of freshwater phytoplankton (pp. 1–396). Cambridge: Cambridge University Press.Google Scholar
  72. Richardson, K., Nielsen, T. G., Pedersen, F. B., Heilmann, J. P., Lokkegaard, B., & Kaas, H. (1998). Spatial heterogeneity in the structure of the planktonic food web in the North Sea. Marine Ecology Progress Series, 168, 197–211.CrossRefGoogle Scholar
  73. Robarts, D. R., Zohary, T., Waiser, M. J., & Yacobi, Y. Z. (1996). Bacterial abundance, biomass, and production in relation to phytoplankton biomass in the Levantine Basin of south-eastern Mediterranean Sea. Marine Ecology Progress Series, 137, 273–281.CrossRefGoogle Scholar
  74. Roman, M. R., Caron, D. A., Kremer, P., Lessard, E. J., Madin, L. P., Malone, T. C., Napp, J. M., Peele, E. R., & Youngbluth, M. J. (1995). Spatial and temporal changes in the partitioning of organic carbon in the planktonic community of the Sargasso Sea off Bermuda. Deep-Sea Res Part I, 42(6), 973–992.CrossRefGoogle Scholar
  75. Sasamal, S. K., Panigrahy, R. C., & Misra, S. (2005). Asterionella bloom in the north western Bay of Bengal during 2004. International Journal of Remote Sensing, 26(17), 3853–3858.CrossRefGoogle Scholar
  76. Schelske, C. L., & Stoermer, E. F. (1971). Eutrophlcation, silica depletion and predicted changes in algal quality in Lake Michigan. Science, 173, 423–424.PubMedCrossRefGoogle Scholar
  77. SenGupta, R., De Sousa, S. N., & Joseph, T. (1977). On nitrogen and phosphorous in the western Bay of Bengal. Indian Journal of Marine Sciences, 6, 107–110.Google Scholar
  78. Sherr, E., & Sherr, B. (1988). Role of microbes in pelagic food webs: A revised concept. Limnology and Oceanography, 33(5), 1225–1227.CrossRefGoogle Scholar
  79. Siokou-Frangou, I., Bianchi, M., Christaki, U., Christou, E., Giannakourou, A., Gotsis-Skretas, O., Ignatiades, L., Pagou, K., Pitta, P., Psarra, S., Souvermezoglou, E., Van Wambeke, F., & Zervakis, V. (2002). Differential carbon transfer along a gradient of oligotrophy in the Aegean Sea (Mediterranean). Journal of Marine Systems, 33–34, 335–353.CrossRefGoogle Scholar
  80. Skirrow, G. (1975). The dissolved gases – Carbon dioxide. In J. P. Riley & G. Skirrow (Eds.), Chemical oceanography. New York: Academic.Google Scholar
  81. Skvortzow, B. W. (1928). Die Euglenacaengathung Phacus Dujardin. Ibid., 46, 105–125;Pl.2.Google Scholar
  82. Sournia, A. (1973). La production primaire planctonique en Mediterranee, Essai de mise en jour. Bulletin Etude en Commun de la Méditerranée 5 (no sp.), 128 pp.Google Scholar
  83. Stefanou, P., Tsirtsis, G., & Karydis, M. (2000). Nutrient scaling for assessing eutrophication: The development of a stimulated normal distribution. Ecological Applications, 10, 303–309.CrossRefGoogle Scholar
  84. Subrahmanyan, R. (1946). A systematic account of the marine plankton diatoms of the Madras coast. Proceedings of the Indian Academy of Sciences, 24B, 85–197.Google Scholar
  85. Swirenko, D. O. (1915). Materialy K floria vordoroslei Rossii. Niepotoryia dannyia K sistematikie I geografii Euglenaceae. Obschchestvo Ispytatelei Prirody, Khar’kov. Turdy, 48(1), 67–148.Google Scholar
  86. Trigueros, J. M., & Orive, E. (2001). Seasonal variations of diatoms and dinoflagellates in a shallow, temperate estuary, with emphasis on neritic assemblages. Hydrobiologia, 444, 119–133.CrossRefGoogle Scholar
  87. Tsirtis, G. E. (1995). A simulation model for the description of a eutrophic system with emphasis on the microbial processes. Water Science and Technology, 32, 189–196.CrossRefGoogle Scholar
  88. Turley, C. M., Bianchi, M., Christaki, U., Conan, P., Harris, J. R. W., Psarra, S., Ruddy, G., Stutt, E. D., Tselepides, A., & Van Wambeke, F. (2000). Relationship between primary producers and bacteria in an oligotrophic sea – The Mediterranean and biogeochemical implications. Marine Ecology Progress Series, 193, 11–18.CrossRefGoogle Scholar
  89. Venkataraman, G. (1939). A systematic account of some south Indian diatoms. Proceedings of the Indian Academy of Sciences, 10, 293–368.Google Scholar
  90. Venkataraman, K., & Wafar, M. (2005). Coastal and marine biodiversity of India. Indian Journal of Marine Sciences, 34(1), 57–75.Google Scholar
  91. Verlencar, X. N., & Qasim, S. Z. (1985). Particulate organic matter in the coastal and estuarine waters of Goa and its relationship with phytoplankton production. Estuarine, Coastal and Shelf Science, 21, 235–242.CrossRefGoogle Scholar
  92. Vollenweider, R. A., & Kerekes, J. J. (1982). Eutrophication of waters: Monitoring, assessment and control. Paris: OECD.Google Scholar
  93. Vollenweider, R. A., Giovanardi, F., Montanari, G., & Rinaldi, A. (1998). Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: Proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics, 9, 329–357.CrossRefGoogle Scholar
  94. Wondie, A., et al. (2007). Seasonal variation in primary production of a large high altitude tropical lake (Lake Tana, Ethiopia): Effects of nutrient availability and water transparency. Aquatic Ecology, 41, 195–207.CrossRefGoogle Scholar
  95. Yacobi, Y. Z., Zohary, T., Kress, N., Hecht, A., Robarts, R. D., Waiser, M., & Wood, A. M. (1995). Chlorophyll distribution throughout the southeastern Mediterranean in relation to the physical structure of the water mass. Journal of Marine Systems, 6(3), 179–190.CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Ruma Pal
    • 1
  • Avik Kumar Choudhury
    • 1
  1. 1.Department of BotanyUniversity of CalcuttaKolkataIndia

Personalised recommendations