Skip to main content

Community Pattern Analysis

  • Chapter
  • First Online:
  • 1548 Accesses

Abstract

Phytoplankton communities in aquatic ecosystems are the most important component that varies significantly on the basis of the available environmental conditions and trophic status of the habitat. Thus, analysis of the phytoplankton community is highly indicative of the condition of the habitat. Interpretation of plankton data from an ecological perspective depends upon the sampling strategy and the area of study. Thus, strategies of phytoplankton sampling may vary depending upon the ecosystem dynamics which is different for standing water (lakes and wetlands) as compared to lotic habitats (rivers and estuaries). For proper and precise data, collection sampling cannot remain restricted to a particular station or site. Several sites/stations should be sampled on the same instance to reduce uneven horizontal distribution (patchiness). Accordingly, sample collection for phytoplankton community analysis is an important aspect for correct community pattern analysis. From time to time the procedures for phytoplankton sample collection have improved significantly. Thus, in this section, we will discuss about the more commonly used phytoplankton sampling methods applicable both in estuarine and marine habitats.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Boyd, C. M., & Johnson, G. W. (1995). Precision of size determination of resistive electronic particle counters. Journal of Plankton Research, 17, 41–58.

    Article  Google Scholar 

  • Desortova, B. (1981). Relationships between chlorophyll-a concentration and phytoplankton biomass in several reservoirs in Czechoslovakia. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 66, 153–169.

    Article  CAS  Google Scholar 

  • Diez, B., Pedros-Alio, C., & Massana, R. (2001). Genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Applied and Environmental Microbiology, 67, 2932–2941.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eaton, D. R., Brown, J., Addison, J. T., Milligan, S. P., & Fernand, L. J. (2003). Edible crab (Cancer pagurus) larvae surveys off the east coast of England; implications for stock structure. Fisheries Research, 65, 191–199.

    Article  Google Scholar 

  • Edler, L. (Ed.). (1979). Phytoplankton and chlorophyll: Recommendations on methods for marine biological studies in the Baltic Sea (Baltic Marine Biologists Publication No. 5, p. 38). Uppsala, Sweden.

    Google Scholar 

  • Edwards, I. P., Burgmann, H., Miniaci, C., & Zeyer, J. (2006). Variation in microbial community composition and culturability in the rhizosphere of Leucanthemopsis alpina (L) heywood and adjacent bare soil along an alpine chronosequence. Microbial Ecology, 52, 679–692.

    Article  CAS  PubMed  Google Scholar 

  • Estep, K. W., MacIntyre, F., Hjorleifsson, E., & Sieburth, J. M. (1986). MacImage: A user friendly image-analysis system for the accurate mensuration of marine organisms. Marine Ecology Progress Series, 33, 243–253.

    Article  Google Scholar 

  • Geider, R. J., MacIntyre, H. L., & Kana, T. M. (1997). Dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophyll a: Carbon ratio to light, nutrient-limitation and temperature. Marine Ecology Progress Series, 148, 187–200.

    Article  Google Scholar 

  • Herbland, A., Bouteiller, A. L., & Raimbault, P. (1985). Size structure of phytoplankton biomass in the equatorial Atlantic Ocean. Deep Sea Research Part A. Oceanographic Research Papers, 32(7), 819–836.

    Article  Google Scholar 

  • Hill, M. O. (1974). Correspondence analysis: A neglected multivariate method. Applied Statistics, 23, 340–354.

    Article  Google Scholar 

  • Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2), 403–424.

    Article  Google Scholar 

  • Holm-Hansen, O., & Riemann, B. (1978). Chlorophyll a determination: Improvements in methodology. Oikos, 30(3), 438–447.

    Article  CAS  Google Scholar 

  • James, F. C., & McCulloch, C. E. (1990). Multivariate analysis in ecology and systematics: Panacea or pandora’s box? Annual Review of Ecology and Systematics, 21, 129–166.

    Google Scholar 

  • Jolicoeur, P., & Mosimann, J. E. (1960). Size and shape variation in the painted turtle. Growth, 24, 339–354.

    CAS  PubMed  Google Scholar 

  • Kalchev, R. K., Beshkova, M. B., Boumbarova, C. S., Tsvetkova, R. L., & Sais, D. (1996). Some allometric and non-allometric relationships between chlorophyll-a and abundance variables of phytoplankton. Hydrobiologia, 341, 235–245.

    Article  CAS  Google Scholar 

  • Kent, A. D., Yannarell, A. C., Rusak, J. A., Triplett, E. W., & McMahon, K. D. (2007). Synchrony in aquatic microbial community dynamics. ISME Journal, 1, 38–47.

    Article  CAS  PubMed  Google Scholar 

  • Kovala, P. E., & Larrance, J. D. (1966). Computation of phytoplankton cell numbers, cell volume, cell surface and plasma volume per liter from microscopical counts (Special Report 38; 21 +Appendix). Seattle: Department of Oceanography, University of Washington.

    Google Scholar 

  • Krambeck, C., Krambeck, H. J., & Overbeck, J. (1981). Microcomputer-assisted biomass determination of plankton bacteria on scanning electron micrographs. Applied and Environmental Microbiology, 42, 142–149.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280.

    Article  Google Scholar 

  • Legendre, P., & Legendre, L. F. J. (1998). Numerical ecology (pp. 1–870). Amsterdam: Elsevier.

    Google Scholar 

  • Lopez-Garcia, P., Moreira, D., & Rodriguez-Valera, F. (2001). Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiology Ecology, 36, 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Montagnes, D. J. S., Berges, J. A., Harrison, P. J., & Taylor, F. J. R. (1994). Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnology and Oceanography, 39, 1044–1060.

    Article  CAS  Google Scholar 

  • Olapade, O. A., Gao, X., & Leff, L. G. (2005). Abundance of three bacterial populations in selected streams. Microbial Ecology, 49, 461–467.

    Article  CAS  PubMed  Google Scholar 

  • Psenner, R. (1993). Determination of size and morphology of aquatic bacteria by automated image analysis. In P. F. Kemp, B. F. Sherr, E. B. Sherr, & J. J. Cole (Eds.), Handbook of methods in aquatic microbial ecology (pp. 339–345). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Reynolds, C. S. (1984). The ecology of freshwater phytoplankton (pp. 1–396). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rott, E. (1981). Some results from phytoplankton counting intercalibrations. Schweizerische Zeitschrift für Hydrologie, 43, 34–62.

    Google Scholar 

  • Shepard, R. N. (1966). Metric structures in ordinal data. Journal of Mathematical Psychology, 3, 287–315.

    Article  Google Scholar 

  • Sieracki, C. K., Sieracki, M. E., & Yentsch, C. M. (1998). An imaging in-flow system for automated analysis for marine microplankton. Marine Ecology Progress Series, 168, 285–296.

    Article  Google Scholar 

  • Smayda, T. J. (1978). From phytoplankton to biomass. In A. Sournia (Ed.), Phytoplankton manual (Monographs on oceanographic methodology 6; pp. 273–279). Paris: UNESCO.

    Google Scholar 

  • Staay, S. Y. M., Wacher, R. D., & Vault, D. (2001). 18srDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature, 409, 607–609.

    Article  Google Scholar 

  • Steen, H. B. (1990). Characters of flow cytometers. In M. R. Melamed, T. Lindmo, & M. L. Mendelsohn (Eds.), Flow cytometry and sorting (2nd ed., pp. 11–25). New York: Wiley-Liss.

    Google Scholar 

  • Tolstoy, A. (1977). Chlorophyll-a as a measure of phytoplankton biomass. Acta Universitatis Uppsaliensis, 416, 1–30.

    Google Scholar 

  • Wetzel, R. G., & Likens, G. E. (1991). Limnological analyses (2nd ed., 391 pp). New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Pal, R., Choudhury, A.K. (2014). Community Pattern Analysis. In: An Introduction to Phytoplanktons: Diversity and Ecology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1838-8_4

Download citation

Publish with us

Policies and ethics