Community Pattern Analysis

  • Ruma Pal
  • Avik Kumar Choudhury


Phytoplankton communities in aquatic ecosystems are the most important component that varies significantly on the basis of the available environmental conditions and trophic status of the habitat. Thus, analysis of the phytoplankton community is highly indicative of the condition of the habitat. Interpretation of plankton data from an ecological perspective depends upon the sampling strategy and the area of study. Thus, strategies of phytoplankton sampling may vary depending upon the ecosystem dynamics which is different for standing water (lakes and wetlands) as compared to lotic habitats (rivers and estuaries). For proper and precise data, collection sampling cannot remain restricted to a particular station or site. Several sites/stations should be sampled on the same instance to reduce uneven horizontal distribution (patchiness). Accordingly, sample collection for phytoplankton community analysis is an important aspect for correct community pattern analysis. From time to time the procedures for phytoplankton sample collection have improved significantly. Thus, in this section, we will discuss about the more commonly used phytoplankton sampling methods applicable both in estuarine and marine habitats.


Particulate Organic Carbon Phytoplankton Community Shannon Entropy Simpson Index Phytoplankton Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Boyd, C. M., & Johnson, G. W. (1995). Precision of size determination of resistive electronic particle counters. Journal of Plankton Research, 17, 41–58.CrossRefGoogle Scholar
  2. Desortova, B. (1981). Relationships between chlorophyll-a concentration and phytoplankton biomass in several reservoirs in Czechoslovakia. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 66, 153–169.CrossRefGoogle Scholar
  3. Diez, B., Pedros-Alio, C., & Massana, R. (2001). Genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Applied and Environmental Microbiology, 67, 2932–2941.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Eaton, D. R., Brown, J., Addison, J. T., Milligan, S. P., & Fernand, L. J. (2003). Edible crab (Cancer pagurus) larvae surveys off the east coast of England; implications for stock structure. Fisheries Research, 65, 191–199.CrossRefGoogle Scholar
  5. Edler, L. (Ed.). (1979). Phytoplankton and chlorophyll: Recommendations on methods for marine biological studies in the Baltic Sea (Baltic Marine Biologists Publication No. 5, p. 38). Uppsala, Sweden.Google Scholar
  6. Edwards, I. P., Burgmann, H., Miniaci, C., & Zeyer, J. (2006). Variation in microbial community composition and culturability in the rhizosphere of Leucanthemopsis alpina (L) heywood and adjacent bare soil along an alpine chronosequence. Microbial Ecology, 52, 679–692.PubMedCrossRefGoogle Scholar
  7. Estep, K. W., MacIntyre, F., Hjorleifsson, E., & Sieburth, J. M. (1986). MacImage: A user friendly image-analysis system for the accurate mensuration of marine organisms. Marine Ecology Progress Series, 33, 243–253.CrossRefGoogle Scholar
  8. Geider, R. J., MacIntyre, H. L., & Kana, T. M. (1997). Dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophyll a: Carbon ratio to light, nutrient-limitation and temperature. Marine Ecology Progress Series, 148, 187–200.CrossRefGoogle Scholar
  9. Herbland, A., Bouteiller, A. L., & Raimbault, P. (1985). Size structure of phytoplankton biomass in the equatorial Atlantic Ocean. Deep Sea Research Part A. Oceanographic Research Papers, 32(7), 819–836.CrossRefGoogle Scholar
  10. Hill, M. O. (1974). Correspondence analysis: A neglected multivariate method. Applied Statistics, 23, 340–354.CrossRefGoogle Scholar
  11. Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2), 403–424.CrossRefGoogle Scholar
  12. Holm-Hansen, O., & Riemann, B. (1978). Chlorophyll a determination: Improvements in methodology. Oikos, 30(3), 438–447.CrossRefGoogle Scholar
  13. James, F. C., & McCulloch, C. E. (1990). Multivariate analysis in ecology and systematics: Panacea or pandora’s box? Annual Review of Ecology and Systematics, 21, 129–166.Google Scholar
  14. Jolicoeur, P., & Mosimann, J. E. (1960). Size and shape variation in the painted turtle. Growth, 24, 339–354.PubMedGoogle Scholar
  15. Kalchev, R. K., Beshkova, M. B., Boumbarova, C. S., Tsvetkova, R. L., & Sais, D. (1996). Some allometric and non-allometric relationships between chlorophyll-a and abundance variables of phytoplankton. Hydrobiologia, 341, 235–245.CrossRefGoogle Scholar
  16. Kent, A. D., Yannarell, A. C., Rusak, J. A., Triplett, E. W., & McMahon, K. D. (2007). Synchrony in aquatic microbial community dynamics. ISME Journal, 1, 38–47.PubMedCrossRefGoogle Scholar
  17. Kovala, P. E., & Larrance, J. D. (1966). Computation of phytoplankton cell numbers, cell volume, cell surface and plasma volume per liter from microscopical counts (Special Report 38; 21 +Appendix). Seattle: Department of Oceanography, University of Washington.Google Scholar
  18. Krambeck, C., Krambeck, H. J., & Overbeck, J. (1981). Microcomputer-assisted biomass determination of plankton bacteria on scanning electron micrographs. Applied and Environmental Microbiology, 42, 142–149.PubMedCentralPubMedGoogle Scholar
  19. Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280.CrossRefGoogle Scholar
  20. Legendre, P., & Legendre, L. F. J. (1998). Numerical ecology (pp. 1–870). Amsterdam: Elsevier.Google Scholar
  21. Lopez-Garcia, P., Moreira, D., & Rodriguez-Valera, F. (2001). Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiology Ecology, 36, 193–202.PubMedCrossRefGoogle Scholar
  22. Montagnes, D. J. S., Berges, J. A., Harrison, P. J., & Taylor, F. J. R. (1994). Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnology and Oceanography, 39, 1044–1060.CrossRefGoogle Scholar
  23. Olapade, O. A., Gao, X., & Leff, L. G. (2005). Abundance of three bacterial populations in selected streams. Microbial Ecology, 49, 461–467.PubMedCrossRefGoogle Scholar
  24. Psenner, R. (1993). Determination of size and morphology of aquatic bacteria by automated image analysis. In P. F. Kemp, B. F. Sherr, E. B. Sherr, & J. J. Cole (Eds.), Handbook of methods in aquatic microbial ecology (pp. 339–345). Boca Raton: Lewis Publishers.Google Scholar
  25. Reynolds, C. S. (1984). The ecology of freshwater phytoplankton (pp. 1–396). Cambridge: Cambridge University Press.Google Scholar
  26. Rott, E. (1981). Some results from phytoplankton counting intercalibrations. Schweizerische Zeitschrift für Hydrologie, 43, 34–62.Google Scholar
  27. Shepard, R. N. (1966). Metric structures in ordinal data. Journal of Mathematical Psychology, 3, 287–315.CrossRefGoogle Scholar
  28. Sieracki, C. K., Sieracki, M. E., & Yentsch, C. M. (1998). An imaging in-flow system for automated analysis for marine microplankton. Marine Ecology Progress Series, 168, 285–296.CrossRefGoogle Scholar
  29. Smayda, T. J. (1978). From phytoplankton to biomass. In A. Sournia (Ed.), Phytoplankton manual (Monographs on oceanographic methodology 6; pp. 273–279). Paris: UNESCO.Google Scholar
  30. Staay, S. Y. M., Wacher, R. D., & Vault, D. (2001). 18srDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature, 409, 607–609.CrossRefGoogle Scholar
  31. Steen, H. B. (1990). Characters of flow cytometers. In M. R. Melamed, T. Lindmo, & M. L. Mendelsohn (Eds.), Flow cytometry and sorting (2nd ed., pp. 11–25). New York: Wiley-Liss.Google Scholar
  32. Tolstoy, A. (1977). Chlorophyll-a as a measure of phytoplankton biomass. Acta Universitatis Uppsaliensis, 416, 1–30.Google Scholar
  33. Wetzel, R. G., & Likens, G. E. (1991). Limnological analyses (2nd ed., 391 pp). New York: Springer.Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Ruma Pal
    • 1
  • Avik Kumar Choudhury
    • 1
  1. 1.Department of BotanyUniversity of CalcuttaKolkataIndia

Personalised recommendations