Advertisement

Physicochemical Environment of Aquatic Ecosystem

  • Ruma Pal
  • Avik Kumar Choudhury
Chapter

Abstract

Influence of physical and chemical environment of a water body together with the growth pattern of individuals plays important roles in phytoplankton dynamics.

Keywords

Dissolve Inorganic Nitrogen Euphotic Zone Phytoplankton Population Redfield Ratio Sodium Acetate Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: APHA-AWWA-WPCF.Google Scholar
  2. Behrenfeld, M. J., & Falkowski, P. G. (1997). A consumer’s guide to phytoplankton primary productivity models. Limnology and Oceanography, 42(7), 1479–1491.CrossRefGoogle Scholar
  3. Bergmann, S., Ihmels, J., & Barkai, N. (2004). Similarities and differences in genome-wide expression data of six organisms. PLoS Biology, 2, E9.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Broecker, W. S., & Henderson, G. M. (1998). The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes. Paleoceanography, 13(4), 352.CrossRefGoogle Scholar
  5. Capone, D. G., et al. (2005). Nitrogen fixation by Trichodesmium spp. An important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Global Biogeochemical Cycles, 19(GB2024), 17. doi: 10.1029/2004GB002331.Google Scholar
  6. Diehl, S. (2002). Phytoplankton, light, and nutrients in a gradient of mixing depths: Theory. Ecology, 83, 386–398.CrossRefGoogle Scholar
  7. Droop, M. R. (1983). 25 years of algal growth kinetics – A personal view. Botanica Marina, 26, 99–112.CrossRefGoogle Scholar
  8. Edwards, M., & Richardson, A. J. (2004). Impact of climate change on marine pelagic phenology and trophic mismatch. Nature, 430, 881–884.PubMedCrossRefGoogle Scholar
  9. Falkowski, P. G. (2000). The global carbon cycle: A test of our knowledge of earth as a system. Science, 290(5490), 291–296.PubMedCrossRefGoogle Scholar
  10. Falkowski, P. G. (1995). Ironing out what controls primary production in the nutrient rich waters of the open ocean. Global Change Biology, 1, 161–163.CrossRefGoogle Scholar
  11. Fogg, G. E. (1991). The phytoplanktonic ways of life. The New Phytologist, 118, 191–232.CrossRefGoogle Scholar
  12. Goericke, R., Olson, R. J., & Shalapyouok, A. (2000). A novel niche for Prochlorococcus sp. in low-light suboxic environments in the Arabian Sea and the Eastern Tropical North Pacific. Deep-Sea Research, 47, 1183–1205.CrossRefGoogle Scholar
  13. Goldman, J. C., McCarthy, J. J., & Peavey, D. G. (1979). Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature, 279, 212–215.CrossRefGoogle Scholar
  14. Hansen, P. J. (2002). Effect of high pH on the growth and survival of marine phytoplankton: Implications for species succession. Aquatic Microbial Ecology, 28, 279–288.CrossRefGoogle Scholar
  15. Harris, G. P., & Vollenweider, R. A. (1982). Paleolimnological evidence of early eutrophication in lake Erie. Canadian Journal of Fisheries and Aquatic Sciences, 39, 618–626.CrossRefGoogle Scholar
  16. Hays, G. C., Richardson, A. J., & Robinson, C. (2005). Climate change and marine plankton. Trends in Ecology & Evolution, 20(6), 337–344.CrossRefGoogle Scholar
  17. Hecky, R. E., Campbell, P., & Hendzel, L. L. (1993). The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnology and Oceanography, 38(4), 709–724.CrossRefGoogle Scholar
  18. Huisman, J., & Weissing, F. J. (1995). Competition for nutrients and light in a mixed water column: A theoretical analysis. The American Naturalist, 146(4), 536–564.CrossRefGoogle Scholar
  19. Hutchins, D. A., Fu, F. X., Zhang, Y., Warner, M. E., Feng, Y., Portune, K., Bernhardt, P. W., & Mulholland, M. R. (2007). CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnology and Oceanography, 52(4), 1293–1304.CrossRefGoogle Scholar
  20. IPCC. (2001). Climate change 2001: The scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change (J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, & C. A. Johnson, Eds., 881pp.). Cambridge/New York: Cambridge University Press.Google Scholar
  21. IPCC. (2007). Summary for policymakers. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (996pp.). Cambridge/New York: Cambridge University Press.Google Scholar
  22. Kim, J. M., Lee, K., Shin, K., Kang, J. H., Lee, H. W., Kim, M., Jang, P. G., & Jang, M. C. (2006). The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnology and Oceanography, 51(4), 1629–1636.CrossRefGoogle Scholar
  23. Lewitus, A. J., & Kana, T. M. (1994). Responses of estuarine phytoplankton to exogenous glucose: Stimulation versus inhibition of photosynthesis and respiration. Limnology and Oceanography, 39, 182–189.CrossRefGoogle Scholar
  24. Lomas, M. W., & Gilbert, P. M. (1999). Interactions between NH4 and NO3 uptake and assimilation: Comparison of diatoms and dinoflagellates at several growth temperatures. Marine Biology, 133, 541–551.CrossRefGoogle Scholar
  25. Michaelis, L., & Menten, M. L. (1913). Die Kinetik der Invertinwirkung. Biochemische Zeitschrift, 49, 333–369.Google Scholar
  26. Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46(3), 205–221.Google Scholar
  27. Rengefors, K., Ruttenberg, K. C., Haupert, C. L., Taylor, C., Howes, B. L., & Anderson, D. M. (2003). Experimental investigation of taxon-specific response of alkaline phosphatase activity in natural freshwater phytoplankton. Limnology and Oceanography, 48(3), 1167–1175.CrossRefGoogle Scholar
  28. Reynolds, C. S. (2006). The ecology of phytoplanktons. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  29. Tortell, P. D., DiTullio, G. R., Sigman, D. M., François, M., & Morel, M. (2002). CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage. Marine Ecology Progress Series, 236, 37–43.CrossRefGoogle Scholar
  30. Tyrell, T. (1999). The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400, 525–531.CrossRefGoogle Scholar
  31. Vollenweider, R. A., Giovanardi, F., Montanari, G., & Rinaldi, A. (1998). Characterization of the trophic conditions of marine coastal waters with special reference to the NW Adriatic Sea: Proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics, 9, 329–357.CrossRefGoogle Scholar
  32. Wolf-Gladrow, D. A., Bijma, J., & Zeebe, R. E. (1999). Model simulation of the carbonate chemistry in the microenvironment of symbiont bearing foraminifera. Marine Chemistry, 64(3), 181–198.CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Ruma Pal
    • 1
  • Avik Kumar Choudhury
    • 1
  1. 1.Department of BotanyUniversity of CalcuttaKolkataIndia

Personalised recommendations