A Brief Introduction to Phytoplanktons

  • Ruma Pal
  • Avik Kumar Choudhury


‘Phytoplanktons’ are free-floating, photosynthetic, aquatic microorganisms, which move from one place to another, either actively by their locomotory organs (flagella) or passively by water currents. The name ‘phytoplankton’ came from the Greek words ‘φυτόν’ (phyton), meaning ‘plant’, and ‘πλαγκτός’ (planktos), meaning ‘wanderer’ or ‘drifter’. The term ‘plankton’ was first used by the German biologist Victor Hensen in 1887. According to Hensen, ‘plankton included all organic particles which float freely and involuntarily in open water, independent of shores and bottom (Ruttner 1940; Hutchinson 1957)’.


Cyanobacterial Bloom Paralytic Shellfish Poison Chloroplast Envelope Apical Axis Bloom Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adl, S. M., Simpson, A. G. B., Farmer, M. A., Andersen, R. A., Anderson, O. R., Barta, J. R., Bowser, S. S., Brugerolle, G., Fensome, R. A., Fredericq, S., James, T. Y., Karpov, S., Kugreens, P., Krug, J., Lane, C. E., Lewis, L. A., Lodge, J., Lynn, D. H., Mann, D. G., McCourt, R. M., Mendoza, L., Moestrup, O., MozleStandridge, S. E., Nerad, T. A., Shearer, C. A., Smirnov, A. V., Spiegel, F. W., Max, F., & Taylor, J. R. (2005). The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. The Journal of Eukaryotic Microbiology, 52, 399–451.PubMedCrossRefGoogle Scholar
  2. Agassiz, L. (1850). Lake superior: Its physical character, vegetation and animals (428 pp). Boston: Gould, Kendal and Lincoln.Google Scholar
  3. Batt, B. D. J., Anderson, M. G., Anderson, C. D., & Caswell, F. D. (1989). The use of prairie potholes by North American ducks. In A. van der Valk (Ed.), Northern Prairie wetlands (204–227pp.). Ames: Lowa State University Press.Google Scholar
  4. Barica, J. (1975). Collapses of algal blooms in prairie pothole lakes: Their mechanism and ecological impact. Verh. – Int. Thoor. Angew, Limnol., 19, 606–615.Google Scholar
  5. Barica, J. (1990). Seasonal variability of N : P ratios in eutrophic lakes. Hydrobiologia, 191, 97–103.CrossRefGoogle Scholar
  6. Barica, J., Kling, H., & Gibson, J. (1980). Experimental manipulation of algal bloom composition by nitrogen addition. Canadian Journal of Fisheries and Aquatic Sciences, 37, 1175–1183.CrossRefGoogle Scholar
  7. Bold, H. C., & Wynne, M. J. (1985). Introduction to the algae. Englewood Cliffs: Prentice Hall.Google Scholar
  8. Bremer, K. (1985). Summary of green plant phylogeny and classification. Cladistics, I, 369–385.CrossRefGoogle Scholar
  9. Briggs, S. V., Maher, M. T., & Tongway, D. J. (1993). Dissolved and particulate organic carbon in two wetlands in southwestern New South Wales, Australia. Hydrobiologia, 264, 13–19.CrossRefGoogle Scholar
  10. Bryant, D. A. (1994). The molecular biology of cyanobacteria. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  11. Campeau, S., Murkin, H. R., & Titman, R. D. (1994). Relative importance of algae and emergent plant litter to freshwater marsh invertebrates. Canadian Journal of Fisheries and Aquatic Sciences, 51, 681–692.CrossRefGoogle Scholar
  12. Caron, J. M., Jones, A. L., Rall, L. B., & Kirschner, M. W. (1985). Autoregulation of tubulin synthesis in enucleated cells. Nature, 317, 648–651.PubMedCrossRefGoogle Scholar
  13. Cavalier, S. T. (1981). Eukaryote kingdoms: Seven or nine? Bio Systems, 14, 461–481.CrossRefGoogle Scholar
  14. Dolan, T. J., Bayley, S. E., Zoltek, J., Jr., & Hermann, A. J. (1981). Phosphorus dynamics of a Florida freshwater marsh receiving treated wastewater. Journal of Applied Ecology, 18, 205–219.CrossRefGoogle Scholar
  15. Dussart, B., & Roger, G. (1966). Faune planctonique du lac Tchad: 1. Crustacés copepods. Cashiers ORSTOM Serie Oceanoraphie, 4(3), 77–91.Google Scholar
  16. Eichler, A. N. (1886). Syllabus der Vorlesungen iiber specielle and medicin isch pharma ceutische Botanik (4th ed., 68 pp). Berlin.Google Scholar
  17. Fritsch, F. E. (1935). Structure and reproduction of the algae (Vols. I and II). Cambridge: Cambridge University Press.Google Scholar
  18. Geider, R. J., Mac Intyre, H. L., & Kana, T. M. (1997). Dynamic model of phytoplankton growth and acclimation: Responses of the balanced growth rate and the chlorophyll a: Carbon ratio to light, nutrient-limitation and temperature. Marine Ecology Progress Series, 148, 187–200.CrossRefGoogle Scholar
  19. Gross, F. (1937). Notes on the culture of some marine plankton organisms. Journal of the Marine Biological Association of the United Kingdom (New Series), 21(02), 753–768.CrossRefGoogle Scholar
  20. Glazer, A. N., Yeh, S. W., Webb, S. P., & Clark, J. H. (1985). Disk to disk transfer as the rate limiting step for energy flow in phycobilisomes. Science, 227, 419–423.PubMedCrossRefGoogle Scholar
  21. Hall, S. L., & Fisher, F. M. (1985). Annual productivity and extracellular release of dissolved organic compounds by the epibenthic algal community of a brackish marsh. Journal of Phycology, 21, 277–281.CrossRefGoogle Scholar
  22. Hanson, M. A., & Butler, M. G. (1994). Responses to food web manipulation in a shallow waterfowl lake. Hydrobiologia, 279–280, 457–466.CrossRefGoogle Scholar
  23. Henebry, M. S., & Cairna, J., Jr. (1984). Protozoan colonization rates and trophic status of some freshwater wetland lakes. Journal of Protozoology, 31, 456–467.CrossRefGoogle Scholar
  24. Hutchinson, G. E. (1957). A treatise on limnology (1015 pp). New York: Wiley.Google Scholar
  25. Hutchinson, G. E. (1967). A treatise on limnology (Vol. II, 1115 pp). New York: Wiley.Google Scholar
  26. Jeffrey, S. W., & Egeland, E. S. (2008). Pigments of green and red forms of Dunaliella, and related chlorophytes. In A. Ben-Amotz, J. E. W. Polle, & D. V. Subba Rao (Eds.), The alga Dunaliella: Biodiversity, physiology, genomics and biotechnology (pp. 111–145). Enfield: Science Publishers.Google Scholar
  27. Jeffrey, S. W., & Wright, S. W. (1997). Qualitative and quantitative HPLC analysis of SCOR reference algal cultures. In S. W. Jeffrey, R. F. C. Mantoura, & S. W. Wright (Eds.), Phytoplankton pigments in oceanography: Guidelines to modern methods (pp. 343–360). Paris: UNESCO Publishing.Google Scholar
  28. Jeffrey, S. W., & Wright, S. W. (2006). Photosynthetic pigments in marine microalgae: Insights from cultures and the sea. In D. V. Subba Rao (Ed.), Algal cultures, analogues of blooms and applications (pp. 33–90). Enfield: Science Publishers.Google Scholar
  29. Jeffrey, S. W., Mantoura, R. F. C., & Bjφrnland, T. (1997a). Data for the identification of 47 key pohytoplankton pigments. In S. W. Jeffrey, R. F. C. Mantoura, & S. W. Wright (Eds.), Phytoplankton pigments in oceanography: Guidelines to modern methods (pp. 449–559). Paris: UNESCO Publishing.Google Scholar
  30. Jeffrey, S. W., Mantoura, R. F. C., & Wright, S. W. (Eds.). (1997b). Phytoplankton pigments in oceanography: Guidelines to modern methods. Paris: UNESCO Publishing.Google Scholar
  31. Johnson, P. W., & Sieburth, J. M. N. (1979). Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass. Limnology and Oceanography, 24, 928–935.CrossRefGoogle Scholar
  32. Lee, R. E. (1980, 1989, 1999, 2008). Phycology. Cambridge: Cambridge University Press.Google Scholar
  33. Li, W. K. W., Subba Rao, D. V., Harrison, W. G., Smith, J. C., Cullen, J. J., Irwin, B., & Platt, T. (1983). Autotrophic pico- plankton in the tropical ocean. Science, 219, 292–295.PubMedCrossRefGoogle Scholar
  34. Kadlec, J. A. (1986). Effects of flooding on dissolved and suspended nutrients in small diked marshes. Canadian Journal of Fisheries and Aquatic Sciences, 43, 1999–2008.CrossRefGoogle Scholar
  35. Klarer, D. M., & Millie, D. F. (1992). Aquatic macrophytes and algae at Old Woman Creek estuary and other Great Lakes coastal wetlands. Journal of Great Lakes Research, 18, 622–633.CrossRefGoogle Scholar
  36. Kotak, B. G., & Robinson, G. G. C. (1991). Artificially-induced water turbulence and the physical and biological features within small enclosures. Archives of Hydrobiology, 122, 335–349.Google Scholar
  37. McFadden, G. I. (2001). Primary and secondary endosymbiosis and the origin of plastids. Journal of Phycology, 37, 951–959.CrossRefGoogle Scholar
  38. Meijer, M. A., deHaan, M. W., Breukelaar, A. W., & Buiteveld, H. (1990). Is reduction of the benthivorous fish as important cause of high transparency following biomanipulation in shallow lakes? Hydrobiologia, 200–201, 303–315.CrossRefGoogle Scholar
  39. Mereschkowski, K. (1905). Über Natur und ursprung der chromatophoren im pflanzenreiche. Biologisches Centralblatt, 25, 593–604, 689–691.Google Scholar
  40. Mitsch, W. J., & Gosselink, J. G. (1993). Wetlands (2nd ed.). New York: Van Nostrand-Reinhold.Google Scholar
  41. Mitsch, W. J., & Reeder, B. C. (1991). Modelling nutrient retention of a freshwater coastal wetland: Estimating the roles of primary productivity, sedimentation resuspension and hydrology. Ecological Modelling, 54, 151–187.CrossRefGoogle Scholar
  42. Moss, B. (1983). The Norfolk Broadland: Experiments in the restoration of a complex wetland. Biological Reviews of the Cambridge Philosophical Society, 58, 521–561.CrossRefGoogle Scholar
  43. Murkin, H. R., van der Walk, A. G., & Davis, C. B. (1989). Decomposition of four dominant macrophytes in the Delta Marsh, Manitoba. Wildlife Society Bulletin, 17, 215–221.Google Scholar
  44. Murkin, H. R., Stainton, M. P., Boughen, J. A., Pollard, J. B., & Titman, R. D. (1991). Nutrient status of wetlands in the interlake region of Manitoba, Canada. Wetlands, 11, 105–122.CrossRefGoogle Scholar
  45. Nair, A., Sathyendranath, S., Platt, T., Morales, J., Stuart, V., Forget, M. H., Devred, E., & Bouman, H. (2008). Remote sensing of phytoplankton functional types. Remote Sensing of Environment, 112, 3366–3375.CrossRefGoogle Scholar
  46. Pearl, H. W., & Ustach, J. F. (1982). Blue green algae scums: An explanation for their occurrence during freshwater blooms. Limnology and Oceanography, 27, 212–217.CrossRefGoogle Scholar
  47. Pickett-Heaps, J. D. (1967). Ultrastructure and differentiation in Chara sp. II. Mitosis. Australian Journal of Biological Sciences, 20, 883–894.Google Scholar
  48. Pickett-Heaps, J. D. (1969). The evolution of the mitotic apparatus: An attempt at comparative ultrastructural cytology in dividing plant cells. Cytobios, I, 257–280.Google Scholar
  49. Pickett-Heaps, J. D. (1972a). Variation in mitosis and cytokinesis in plant cells: Its significance in the phylogeny and evolution of ultrastructural systems. Cytobios, 5, 59–77.Google Scholar
  50. Pickett-Heaps, J. D. (1972b). Cell division in Klebsormidium subtilissimum (formerly Ulothrix subtilissima) and its possible phylogenetic significance. Cytobios, 6, 167–184.PubMedGoogle Scholar
  51. Pickett-Heaps, J. D. (1975). Green algae – Structure, reproduction and evolution in selected genera. Sunderland: Sinauer.Google Scholar
  52. Pinckney, J., & Zingmark, R. G. (1993). Photophysiological responses of intertidal benthic microalgal communities to in situ light environments: Methodological considerations. Limnology and Oceanography, 38, 1373–1383.CrossRefGoogle Scholar
  53. Porter, G., Tredwell, C. J., Searl, G. F. W., & Barber, I. (1978). Picosecond time – Resolved energy transfer in Phormidium cruentum. Biochimica et Biophysica Acta, 501, 232–245.PubMedCrossRefGoogle Scholar
  54. Prescott, G. W. (1984). The algae – Review. Koenigstein: Otto-Koeltz Science Publishers.Google Scholar
  55. Reeder, B. C. (1994). Estimating the role of autotrophs in nonpoint source phosphorus retention in a Laurentian Great Lakes coastal wetland. Ecological Engineering, 3, 161–169.CrossRefGoogle Scholar
  56. Reynolds, C. S. (1984). The ecology of freshwater phytoplankton (pp. 1–396). Cambridge: Cambridge University Press.Google Scholar
  57. Ruttner, F. (1953). Fundamentals of limnology (242p.). Toronto: University of Toronto Press.Google Scholar
  58. Schütt, F. (1892). Das Pflanzenleben der Hochsee. Ergebnisse der Plankton-Expedition der Humboldt-Stiftung, 1A, 243–324.Google Scholar
  59. Sieburth, J. (1978). Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnology and Oceanography, 23(6), 1256–1263.CrossRefGoogle Scholar
  60. Smayda, T. J. (1997). Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Part 2: The ecology and oceanography of harmful algal blooms. Liminology and Oceanography, 42(5), 1137–1153.Google Scholar
  61. Smith, G. M. (1950). Fresh water algae of the United States. New York/Toronto/London: McGraw-Hill.Google Scholar
  62. Sournia, A. (1973). La production primaire planctonique en Mediterranee, Essai de mise en jour. Bulletin Etude en Commun de la Méditerranée, 5(no sp.), 128pp.Google Scholar
  63. Stanley, D. W. (1976). Productivity of epipelic algae in tundra ponds and a lake near Barrow, Alaska. Ecology, 57, 1015–1024.CrossRefGoogle Scholar
  64. Steidinger, K. A., & Haddad, K. D. (1981). Biologie and hydrographic aspects of red tides. Bioscience, 31(11), 814–819.CrossRefGoogle Scholar
  65. Stewart, K. D., & Mattox, K. R. (1975). Comparative cytology, evolution and classification of the green algae with some consideration of the origin of other organisms with chlorophylls a and b. The Botanical Review, 41, 104–135.CrossRefGoogle Scholar
  66. Throndsen, J. (1978). Productivity and abundance of ultra- and nanoplankton. Oslofjorden, 63(4), 273–284.Google Scholar
  67. Van der Valk, A. G. (1994). Effects of prolonged flooding on the distribution and biomass of emergent species along a freshwater wetland coenocline. Vegetatio, 110, 185–196.CrossRefGoogle Scholar
  68. Vargo, G. A., Heil, C. A., Spence, D., Neely, M. B., Merkt, R., Lester, K., Weisberg, R. H., Walsh, J. J., & Fanning, K. (2001). In: G. M. Hallegraeff, S. I. Blackburn, C. Bolch, & R. J. Lewis (Eds.), IOC of UNESCO (pp. 157–160).Google Scholar
  69. Vernberg, F. J. (1993). Salt-marsh processes: A review. Environmental Toxicology and Chemistry, 12, 2167–2165.CrossRefGoogle Scholar
  70. von Meyer, H. A., & Möbius, K. (1865–1872). Fauna der Kieler bucht. Leipzig: W. Engelmann.Google Scholar
  71. Whittaker, R. H. (1969). New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms. Science, 163(3863), 150–160.PubMedCrossRefGoogle Scholar
  72. Whitton, B. (1970). Biology of Cladophora in freshwaters. Water Research, 4, 457–476.CrossRefGoogle Scholar
  73. Yu, M. H., Glazer, A. N., & William, R. C. (1981). Cyanobacterial phycobilisome. Phycocyanin assembly in the rod substructure of Anabaena variabilis phycobilisomes. Journal of Biological Chemistry, 256, 13130–13136.PubMedGoogle Scholar
  74. Zapata, M., Jeffrey, S. W., Wright, S. W., Rodriguez, F., Garrido, J. L., & Clementson, L. (2004). Photosynthetic pigments in 37 species (65 strains) of Haptophyta: Implications for oceanography and chemotaxonomy. Marine Ecology Progress Series, 270, 83–102.CrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Ruma Pal
    • 1
  • Avik Kumar Choudhury
    • 1
  1. 1.Department of BotanyUniversity of CalcuttaKolkataIndia

Personalised recommendations