Accretion of Electrons/Ions on Dust Particles

  • Mahendra Singh Sodha
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 81)


Orbital model is the simplest model of accretion of electrons/ions on dust particles and the results have been used extensively in complex plasma kinetics. The model assumes that the number of collisions with gaseous species, suffered by ions/electrons is negligible as compared to the number of accretions on the dust particles. It is also of interest to realize that, from classical considerations, the results for a monotonically varying electric potential around a charged particle do not depend on the nature of the variation but only on the electric potential of the particle with reference to the free plasma. Quantum effects, charge exchange ion collisions with neutral atoms and ion trapping also play an important role in accretion, which has been highlighted.


Dust Particle Transmission Coefficient Neutral Atom Cylindrical Particle Radial Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.E. Allen, B.M. Annaratone, U. deAngelis, J. Plasma Phys. 63, 299 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    I.B. Bernstein, I.N. Rabinowitz, Phys. Fluids 2, 112 (1959)ADSCrossRefMATHGoogle Scholar
  3. 3.
    J. Goree, Phys. Rev. Lett. 69, 277 (1969)ADSCrossRefGoogle Scholar
  4. 4.
    M. Lampe, J. Plasma Phys. 65, 171 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    M. Lampe, G. Joyee, G. Ganguli, V. Gavrischaka, Phys. Plasmas 7, 3851 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    M. Lampe, R. Goswami, Z. Sternovsky, S. Robertson, V. Gavrishchaka, G. Ganguli, G. Joyce, Phys. Plasmas 10, 1500 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    D.A. Mendis, M. Rosenberg, Annu. Rev. Astr. Astrophys. 32, 419 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    S.K. Mishra, S. Misra, M.S. Sodha, Phys. Plasmas 18, 103708 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    S.K. Mishra, S. Misra, M.S. Sodha, Europhys. J., D , 67, 210 (2013)Google Scholar
  10. 10.
    S. Misra, S.K. Mishra, M.S. Sodha, Phys. Plasmas 19, 043702 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    B.P. Pandey, S.V. Vladimirov, A.A. Samarian, Phys. Rev. E83, 016401 (2011)ADSGoogle Scholar
  12. 12.
    S.K. Mishra, M.S. Sodha, S. Misra, Phys. Plasmas 19, 073705 (2012)Google Scholar
  13. 13.
    H.M. Mottsmith, I. Langmuir, Phys. Rev. 28,727 (1926)Google Scholar
  14. 14.
    M. Rosenberg, D.A. Mendis, J. Geophys. Res. 97, 14773 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    M.S. Sodha, S.K. Mishra, Phys. Plasmas 18, 044502 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    M.S. Sodha, S. Srivastava, Phys. Lett. A377, 4773 (2010)Google Scholar
  17. 17.
    M.S. Sodha, S.K. Mishra, S. Misra, Phys. Lett. A 374, 3376 (2010)ADSCrossRefMATHGoogle Scholar
  18. 18.
    Y. Tyshetskiy, S.V. Vladimirov, Phys. Rev. E 83, 046406 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    A.V. Zobnin, A.P. Nefedov, A.P. Sinel’stichikov, V.E. Fortov, J. Exp. Theor. Phys. 91, 483 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  1. 1.Department of Education BuildingUniversity of LucknowLucknowIndia

Personalised recommendations