Skip to main content

Re-Programmable Logic Array for Logic Design and Its Reliability Analysis in QCA

  • Conference paper
  • First Online:
Emerging Trends in Computing and Communication

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 298))

Abstract

Quantum dot cellular automaton is now considered as a strong alternative of Complementary Metal Oxide Semiconductor (CMOS) technology. In this paper, we demonstrate an empirical work for implementing Quantum dot Cellular Automata (QCA) based Re-Programmable two variables Re-programmable logic array. It is fully reprogrammable by exploiting the fact of bidirectional nature of QCA. AND or OR logic. In our proposal, we made a different aspect of designing PLA. We made a control word, which must be for both the plane i.e. AND plane and OR plane. The OR plane or AND plane is configured with Majority voter and orthogonal fully populated tile. The PLA cell designed for two variables PLA, Reprogrammable by means of altering control Inputs. In our proposal we can program AND plane as well as OR plane with the control word. The reliability of this Re-PLA is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lent CS, Taugaw PD, Porod W, Bernstein GH (1993) Quantum dot cellular automata. Nanotechnology 4:49–57

    Article  Google Scholar 

  2. Lent CS, Tougaw PD, Porod W (1993) Bistable saturation in coupled quantum dots for quantum cellular automata. Appl Phys Lett 62:7–14

    Article  Google Scholar 

  3. Amlani I, Orlov A, Snider G, Lent C, Porod W, Bernstein G (1999) Experimental demonstration of electron switching in a quantum-dot cellular automaton (QCA) cell. Superlattices Microstruct 25(1–2):273–278

    Article  Google Scholar 

  4. Lent CS, Taugaw PD (1996) Dynamic behavior of quantum cellular automata. J Appl Phys 80(8):4722–4736

    Article  Google Scholar 

  5. Macucci M, Gattobigio M, Bonci L, Iannaccone G, Prins FE, Single C, Wetekam G, Kern DP (2003) A QCA cell in silicon on insulator technology: theory and experiment. Superlattices Microstruct 34:205–211

    Article  Google Scholar 

  6. Momenzadeh M, Huang J, Tahoori MB, Lombardi F (2005) Characterization, test, and logic synthesis of AND–OR-inverter (AOI) gate design for QCA implementation, IEEE Trans. Comput Aided Des Integr Circuits Syst 24:1881–1893

    Article  Google Scholar 

  7. Das K, De D (2009) A study on diverse nanostructure for implementing logic gate design for QCA. In: Proceedings of the international conference ICANN-2009, IIT Guwahati, Guwahati, Assam

    Google Scholar 

  8. Das K, De D (2009) A novel approach of AND–OR-inverter (AOI) gate design for QCA. In: Proceedings of IEEE conference CODEC-09, Kolkata

    Google Scholar 

  9. Das K, De D (2011) Characterisation, applicability and defect analysis for tiles nanostructure of quantum dot cellular automata. Mol Simul 37(3):210–225

    Article  Google Scholar 

  10. Das K, De D (2010) QCA defect and fault analysis of diverse nanostructure for implementing logic gate. Int J Recent Trends Eng Finl 3(1):1–5

    Google Scholar 

  11. Momenzadeh M, Huang J, Lombardi F (2005) Defect and fault tolerance in VLSI systems DFT 2005. In: 20th IEEE international symposium, Washington

    Google Scholar 

  12. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825

    Article  Google Scholar 

  13. Wang W, Walus K, Jullien GA (2003) Quantum-dot cellular automata adders. In: IEEE Nano2003 conference, San Francisco

    Google Scholar 

  14. Jha N, Gupta S (2003) Testing of digital system. Cambridge University Press, Cambridge

    Book  Google Scholar 

  15. Crocker M, Hu XS, Niemier M, Yan M, Bernstein G (2008) PLAs in quantum-dot cellular automata. IEEE Trans Nanotechnol 7(3):376–386

    Article  Google Scholar 

  16. Dysart TJ, Kogge PM (2008) Comparing the reliability of PLA and custom logic implementations of a QCA adder In: IEEE international workshop on design and test of nano devices, circuits and systems, pp 53–56

    Google Scholar 

  17. Crocker M, Hu XS, Niemier M (2007) Fault models and yield analysis for QCA-based PLAs. In: International conference on field programmable logic and applications, pp 435–440

    Google Scholar 

  18. Thoori M, Huang J, Momenzadeh M, Lombardi F (2004) Testing of quantum Cell automata. IEEE Trans Nanotechnol 3(4):432–442

    Article  Google Scholar 

  19. Walus K, Dysart TJ, Jullien GA, Budiman RA (2002) ATIPS laboratory QCA designer. ATIPS laboratory, University of Calgary, Canada. http://www.atips.ca/projects/qcadesigner

  20. Tarjan RE (1972) Depth-first search and linear graph algorithms. SIAM J Comput 1(2):146–160

    Google Scholar 

  21. Fijany A, Toomarian BN (2001) New design for quantum dot cellular automata to obtain fault tolerant logic gates. J Nanopart Res 3:27–37

    Article  Google Scholar 

  22. Huang J, Momenzadeh M, Lombardi F (2007) On the tolerance to manufacturing defects in molecular QCA tiles for processing-by wire. J Electron Test Theory Appl 23(2):163–174

    Article  Google Scholar 

  23. Momenzadeh M, Ottavi M, Lombardi F (2005) Modeling QCA defects at molecular-level in combinational circuits. In: Proceedings of 20th IEEE international symposium on DFT, pp 208–216

    Google Scholar 

  24. Krishnaswamy S, Viamontes GF, Markov IL, Hayes JP (2008) Probabilistic transfer matrices in symbolic reliability analysis of logic circuits. ACM Trans Des Autom Electron Syst 13(1):8–35

    Article  Google Scholar 

  25. Han J, Taylor E, Gao J, Fortes J (2005) Reliability modeling of nanoeltronic circuits. In: Proceedings of 5th IEEE conference on nanotechnology, Nagoya, July 2005

    Google Scholar 

  26. Wang L, Jain F, Lombardi F (2011) Information-theoretic modeling and analysis of stochastic behaviors in quantum-dot cellular automata. Intech Open, Croatia, pp 1–22

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University Grants Commission (UGC), India File No.: 41-631/2012(SR), under which this paper has been completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Das, K., De, D., Ghatak, S., De, M. (2014). Re-Programmable Logic Array for Logic Design and Its Reliability Analysis in QCA. In: Sengupta, S., Das, K., Khan, G. (eds) Emerging Trends in Computing and Communication. Lecture Notes in Electrical Engineering, vol 298. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1817-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1817-3_34

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1816-6

  • Online ISBN: 978-81-322-1817-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics