Skip to main content

In Vitro Evaluation of PGPR Strains for Their Biocontrol Potential Against Fungal Pathogens

  • Chapter
  • First Online:

Abstract

Crop protection has become a basic requirement of the sustainable agriculture to ensure increased crop production. Biological control has been actively practiced as a crop protection measure for more than five decades and the history of biocontrol, its successes and failures, have been extensively reviewed. Plant growth promoting rhizobacteria (PGPR) are an important group of microorganisms, which play a major role in the biocontrol of plant pathogens. All plant-associated microenvironments, especially the rhizosphere, are colonized in high abundances by antagonistic microbes. Between 1 and 35 % of the microbial inhabitants show antagonistic capacity to inhibit the growth of pathogens in vitro by various biocontrol mechanisms that include production of antibiotics, siderophores, lytic enzymes, HCN and induced systemic resistance. In recent years, the popularity of biocontrol agents has increased substantially, as extensive and systematic research has enhanced their effectiveness and consistency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aeron A, Kumar S, Pandey P, Maheshwari DK (2011) Emerging role of plant growth promoting rhizobacteria in agrobiology. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystem. Springer-Verlag, Berlin

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2009) Use of plant growth promoting rhizobacteria for the biocontrol of root rot disease complex of chickpea. Australas Plant Pathol 38:44–50

    Article  Google Scholar 

  • Araujo FF, Henning AA, Hungria M (2005) Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol 21:1639–1645

    Article  CAS  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Hofte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by P. aeruginosa 7NSK2: role of salicyclic acid, pyochelin and pyocyanin. Mol Plant Microbe Interact 11:1147–1156

    Article  Google Scholar 

  • Backman PA, Wilson M, Murphy JF (1997) Bacteria for biological control of plant diseases. In: Rechcigl NA, Rechecigl JE (eds) Environmentally safe approaches to crop disease control. Lewis Publishers, Boca Raton

    Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de-Bashan LE (2005) Bacteria/plant growth promotion. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Oxford

    Google Scholar 

  • Battu PR, Reddy MS (2009) Siderophore mediated antibiosis of rhizobacterial fluorescent pseudomonads against rice fungal pathogens. Int J PharmTech Res 1:227–229

    Google Scholar 

  • Bhattacharya PN, Jha DK (2012) Plant growth promoting rhizobacteria: emergence in agriculture. World J Microbiol Biotechnol 28:127–1350

    Article  Google Scholar 

  • Blachinsky D, Antonov J, Bercovitz A, Elad B, Feldman K, Husid A, Lazare M, Marcov N, Shamai I, Keren-Zur M, Droby S (2007) Commercial applications of “Shemer” for the control of pre- and postharvest diseases. IOBCWPRS Bull 30:75–78

    Google Scholar 

  • Bloemberg GV (2007) Microscopic analysis of plant bacteria interactions using auto fluorescent proteins. Eur J Plant Pathol 119:301–309

    Article  CAS  Google Scholar 

  • Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177

    Article  CAS  PubMed  Google Scholar 

  • Campbell R (1989) Biological control of microbial plant pathogens. Cambridge University Press

    Google Scholar 

  • Choudhary D, Johri BN (2009) Interactions of Bacillus spp. and plants with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  CAS  PubMed  Google Scholar 

  • Cipollone R, Frangipani E, Tiburzi F, Imperi F, Ascenzi P, Visca P (2007) Involvement of Pseudomonas aeruginosa rhodanese in protection from cyanide toxicity. Appl Environ Microbiol 73:390–398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper M, Tavankar GR, Williams HD (2003) Regulation of expression of the cyanide- insensitive terminal oxidase in Pseudomonas aeruginosa. Microbiology 149:1275–1284

    Article  CAS  PubMed  Google Scholar 

  • Couillerot O, Prigent-Combaret C, Caballero-Mellano J, Moenne-Loccoz Y (2009) Pseudomonas fluorescens and closely related fluorescent pseudomonads as biocontrol agents of soil borne phytopathogens. Lett Appl Microbiol 48:505–512

    Article  CAS  PubMed  Google Scholar 

  • Crosa JH (1997) Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 61:319–336

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Bruijn I, de Kock MJ, Yang M, de Waard P, van Beek TA, Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63:417–428

    Article  CAS  PubMed  Google Scholar 

  • de Werra P, Baehler E, Huser A, Keel C, Maurhofer M (2008) Detection of plantmodulated alterations in antifungal gene expression in Pseudomonas fluorescens CHA0 on roots by flow cytometry. Appl Environ Microbiol 74:1339–1349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doumbou CL, Hamby Salove MK, Crawford DL, Beaulieu C (2002) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82:85–102

    Article  Google Scholar 

  • Droby S, Wisniewski M, Macarisinb D, Wilson C (2009) Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol 52:137–145

    Article  Google Scholar 

  • Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 12:1693–1703

    Google Scholar 

  • El-Tarabily KA, Sivasithamparam K (2006) Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520

    Article  CAS  Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (gram-) positive perspective. FEMS Microbiol Lett 171:1–9

    Article  CAS  PubMed  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 111–142

    Google Scholar 

  • Figueiredo MV, Seldin L, de Araujo F, Mariano RLR (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, microbiology monographs. Springer Verlag, berlin, pp 21–44

    Chapter  Google Scholar 

  • Fravel D (2007) Commercialization of biocontrol agents for use against plant pathogens. In: IX Reunia˜o Brasileira sobre Controle Biolo´gico de Doenc¸as de Plantas, Campinas, S. Paulo, Brasil, CD-ROM, pp 1–2

    Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Ann Rev Phytopathol 43:337–359

    Article  CAS  Google Scholar 

  • Frimmersdorf E, Horatzek S, Pelnikevich A, Wiehlmann L, Schomburg D (2010) How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environ Microbiol 12:1734–1747

    Article  CAS  PubMed  Google Scholar 

  • Garbeva P, Silby MW, Raaijmakers JM, Levy SB, Boer WD (2011) Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors. ISME J 5(6):973–985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gomes NC, Cleary DF, Pinto FN, Egas C, Almeida A, Cunha A, Mendonça-Hagler LC, Smalla K (2010) Taking root: enduring effect of rhizosphere bacterial colonization in mangroves. PLoS ONE 5:14065

    Article  Google Scholar 

  • Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2010) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, microbiology monographs 18. doi:10.1007/978-3-642-13612-2_15

    Google Scholar 

  • Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446

    Article  CAS  PubMed  Google Scholar 

  • Hassan KA, Johnson A, Shaffer BT, Ren Q, Kidarsa TA, Elbourne LD, Hartney S, Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290

    Article  Google Scholar 

  • Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290

    Article  Google Scholar 

  • Hofte M, Altier N (2010) Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res Microbiol 161:464–471

    Article  PubMed  Google Scholar 

  • Homma Y, Sato Z, Hirayama F, Konno K, Shirahama H, Suzui T (1989) Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soil borne pathogens. Soil Biol Biochem 21:723–728

    Article  CAS  Google Scholar 

  • Ishimaru CA, Loper JE (1993) Biochemical and genetic analysis of siderophores produced by plant-associated Pseudomonas and Erwinia species. In: Barton LL, Hemming BC (eds) Iron chelation in plants and soil microorganisms. Academic Press, San Diego

    Google Scholar 

  • Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soil-borne peronosporomycetes. Appl Environ Microbiol 71:3786–3796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jagadeesh KS, Kulkarni JH, Krisharaj PU (2001) Evaluation of role of fluorescent siderophore in the biological control of bacterial wilt in tomato using Tn5 mutants of fluorescent Pseudomanas sp. Curr Sci 81:882–883

    Google Scholar 

  • Kavino M, Harish S, Kumar N, Saravanakumar D, Damodaran T, Soorianathasundaram K, Samiyappan R (2007) Rhizosphere and endophytic bacteria for induction of systemic resistance of banana plantlets against bunchy top virus. Soil Biol Biochem 39:1087–1098

    Article  CAS  Google Scholar 

  • Kavitha S, Senthilkumar S, Gnanamanickam SS, Inayathullah M, Jayakumar J (2005) Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16. Process Biochem 40:3236–3243

    Article  CAS  Google Scholar 

  • Kerr A (1980) Biological control of crown gall through production of agrocin 84. Plant Diseases 64:25–30

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: Proceeding of the 4th international conference on plant pathogenic bacteria. Vol. 2, Station de Pathologie Vegetale et Phytobacteriologie, INRA, Angers, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease suppressive soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Knowles CJ (1976) Microorganisms and cynide. Bacteriol Rev 40:652–680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knudsen IMB, Hockenhull J, Jensen DF, Gerhardson B, Hökeberg M, Tahvonen R, Teperi E, Sundheim L, Henriksen B (1997) Selection of biological control agents for controlling soil and seed-borne diseases in the field. Eur J Plant Pathol 103:775–784

    Article  Google Scholar 

  • Kohl J (2009) Screening of biocontrol agents for control of foliar diseases. In: Gisi et al (eds) Recent developments in management of plant diseases. doi:10.1007/978-1-4020-8804-9_9

    Google Scholar 

  • Kuc J (1982) Induced immunity to plant disease. Bioscience 32:854–860

    Article  Google Scholar 

  • Kurek E, Jaroszuk-Scisel J (2003) Rye (Secale cereale) growth promotion by Pseudomonas fluorescens strains and their interactions with Fusarium culmorum under various soil conditions. Biol Control 26:48–56

    Article  Google Scholar 

  • Kurtzman CP, Droby S (2001) Metschnikowia fructicola, new ascosporic yeast with potential for biocontrol of postharvest fruit rots. Syst Appl Microbiol 24:395–399

    Article  CAS  PubMed  Google Scholar 

  • Labuschagne N, Pretorius T, Idris AH (2010) Plant growth promoting rhizobacteria as biocontrol agents against soil borne plant diseases. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, Microbiology monographs. Springer Verlag, berlin, pp 211–230

    Chapter  Google Scholar 

  • Laville J, Blumer C, Von Schroetter C, Gaia V, Defago G, Keel C, Haas D (1998) Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. J Bacteriol 180:3187–3196

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee H, Churey JJ, Worobo RW (2008) Purification and structural characterization of bacillomycin F produced by a bacterial honey isolate active against Byssochlamys fulva H25. J Appl Microbiol 105:663–673

    Article  CAS  PubMed  Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Ann Rev Phytopathol 24:187–209

    Article  CAS  Google Scholar 

  • Lewis JA (1991) Formulation and delivery system of biocontrol agents with emphasis on fungi Beltsville symposia in agricultural research. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. pp 279–287

    Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4:5–13

    Article  CAS  Google Scholar 

  • Manjula K, Podile AR (2001) Chitin supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF1. Can J Microbiol 47:618–625

    Article  CAS  PubMed  Google Scholar 

  • Mathivanan N, Manibhushanrao K (2004) An overview of current strategies on biological control of soil-borne pathogens. In: Prakash HS, Niranjana RS (eds) Vistas in applied botany. Department of Applied Botany and Biotechnology, University of Mysore, Mysore, pp 119–148

    Google Scholar 

  • Mathivanan N, Manibhushanrao K, Murugesan K (2006) Biological control of plant pathogens. In: Anand N (ed) Recent trends in botanical research. University of Madras, Chennai, pp 275–323

    Google Scholar 

  • Mathivanan N, Prabavathy VR, Vijayanandraj VR (2008) The effect of fungal secondary metabolites on bacterial and fungal pathogens. In: Karlovsky P (ed) Secondary metabolites in soil ecology. Springer, Berlin, pp 129–140

    Chapter  Google Scholar 

  • Mavrodi DV, Loper JE, Paulsen IT, Thomashow LS (2009) Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiol. doi:10.1186/1471-2180-9-8

    Google Scholar 

  • Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Archi Microbiol 174:135–142

    Article  CAS  Google Scholar 

  • Moyne AL, Shelby R, Cleveland TE, Tuzun S (2001) Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90:622–629

    Article  CAS  PubMed  Google Scholar 

  • Nakkeeran S, Renukadevi P, Marimuthu T (2005) Antagonistic potentiality of Trichoderma viride and assessment of its efficacy for the management of cotton root rot. Arch. Phytopathol Plant Prot 38:209–225

    Article  Google Scholar 

  • Nandakumar R, Babu S, Viswanathan R, Raguchander T, Samiyappan R (2001) Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biol Biochem 33:603–612

    Article  CAS  Google Scholar 

  • Neilands JB, Leong SA (1986) Siderophores in relation to plant growth and disease. Annu Rev Plant Physiol 37:187–208

    Article  CAS  Google Scholar 

  • Patel D, Jha CK, Tank N, Saraf M (2011) Growth enhancement of chickpea in saline soils using plant growth promoting rhizobacteria. J Plant Growth Regul doi:10.1007/s00344-011-9219-7

    Google Scholar 

  • Pathma J, Kennedy K, Sakthivel N (2011) Mechanisms of fluorescent Pseudomonads that mediate biological control of phytopathogens and plant growth promotion of crop plants. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. doi:10.1007/978-3-642-20332-9_4, Springer-Verlag, Berlin, pp 77–104

    Google Scholar 

  • Pengnoo A, Kusonwiriyawong C, Nilratana L, Kanjanamaneesathian M (2000) Greenhouse and field trials of the bacterial antagonists in pellet formulations to suppress sheath blight of rice caused by Rhizoctonia solani. Biocontrol 45:245–256

    Article  Google Scholar 

  • Perez-Garcia A, Romero D, Zeriouh H, de Vicente A (2011) Biological control of phytopathogenic fungi by aerobic endospore formers. In: Logan NA, De Vos P (eds) Endospore forming soil bacteria. Springer-Verlag, Berlin, pp 157–180

    Chapter  Google Scholar 

  • Petti C, Khan M, Doohan F (2010) Lipid transfer proteins and protease inhibitors as key factors in the priming of barley responses to Fusarium head blight disease by a biocontrol strain of Pseudomonas fluorescens. Funct Integr Genomics 10:619–627

    Article  CAS  PubMed  Google Scholar 

  • Pliego C, Ramos C, de Vicente A, Cazorla FM (2011) Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant Soil 340:505–520

    Article  CAS  Google Scholar 

  • Prabavathy VR, Vajayanandraj VR, Malarvizhi K, Mathivanan N, Mohan N, Murugesan K (2008) Role of actinomycetes and their metabolites in crop protection. In: Khachatourian GC, Arora DK, Rajendran TP, Srivastava AK (eds) Agriculturally important microorganisms. Academic World International, Bhopal, pp 243–255

    Google Scholar 

  • Pueyo MT, Jr CB, Carmona-Ribeiro AM, Mascio P (2009) Lipopetides produced by a soil Bacillus megatarium strain. Microbiol Ecol 57:367–378

    Article  CAS  Google Scholar 

  • Press CM, Lopper JE, Kloepper JW (2001) Role of iron in rhizobacteria mediated induced systemic resistance of cucumber. Phytopathology 91:593–598

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Lee KJ, Freitas H (2008) Effects of chitin and salicyclic acid on biological control of Pseudomonas spp. against damping off of pepper. S Afr J Bot 74:268–273

    Article  CAS  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samayapan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protect 20:1–11

    Article  CAS  Google Scholar 

  • Ramesh S (2009) Marine actinomycetes diversity in Bay of Bengal, India: isolation and characterization of bioactive compounds from Streptomyces fungicidicus MML1614. Ph. D. thesis, University of Madras, Madras, India

    Google Scholar 

  • Ramette A, Frapolli M, Defago G, Moenne-Loccoz Y (2003) Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Mol Plant Microbe Interact 16:525–535

    Article  CAS  PubMed  Google Scholar 

  • Ravel J, Cornelis P (2003) Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends in Microbiol 11:195–200

    Article  CAS  Google Scholar 

  • Romero D, Pe´rez-Garcia A, Rivera ME, Cazorla FM, de Vicente A (2004) Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Appl Microbiol Biotechnol 64:263–269

    Article  CAS  PubMed  Google Scholar 

  • Romero D, de Vicente A, Rakotoal RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis towards Podosphaera fusca. Mol Plant Microbe Interact 20:430–440

    Article  CAS  PubMed  Google Scholar 

  • Sandra AI, Wright CH, Zumoff LS, Steven VB (2001) Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Env Microbiol 67:282–292

    Google Scholar 

  • Saraf M, Jha CK, Patel D (2010) The role of ACC deaminase producing PGPR in sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, microbiology monographs. Springer Verlag, berlin, pp 365–386

    Chapter  Google Scholar 

  • Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267–1271

    Article  CAS  PubMed  Google Scholar 

  • Senthilkumar M, Govindasamy V, Dureja P, Annapurna K (2007) Purification and partial characterization of antifungal peptides from soybean endophyte- Paenibacillus sp strain HKA-15. J Plant Biochem Biotechnol 16:131–134

    Article  CAS  Google Scholar 

  • Silva HSA, de Silva RR, Macagnan D, de Almeda Halfeld-VieraB, Pereira MCB, Mounteer A (2004) Rhizobacterial induction of systemic resistance in tomato plants: non specific protection and increase in enzyme activities. Biol Control 29:288–295

    Article  CAS  Google Scholar 

  • Stadnik MJ (2000) Induc¸a˜o de resisteˆncia a Oı´dios. Summa Phytopath 26:175–177

    Google Scholar 

  • Stockwell VO, Stack JP (2007) Using Pseudomonas spp. for integrated biological control. Phytopathology 97:244–249

    Article  PubMed  Google Scholar 

  • Tapadar SA, Jha DK (2013) Disease management in staple crops: a bacteriological approach. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer-Verlag, Berlin

    Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Ann Rev Phytopath 36:453–483

    Article  CAS  Google Scholar 

  • Velicer GJ, Raddatz G, Keller H, Deiss S, Lanz C, Dinkelacker I, Schuster SC (2006) Comprehensive mutation identification in an evolved bacterial cooperator and its cheating ancestor. Proc Natl Acad Sci U S A 103:8107–8112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weger LA, Arendonk JJ, Recourt K, Hofstad GA, Weisbeek PJ, Lugtenberg B (1988) Siderophore-mediated uptake of Fe3+ by the plant growth-stimulating Pseudomonas putida strain WCS358 and by other rhizosphere microorganisms. J Bacteriol 170:4693–4698

    PubMed Central  PubMed  Google Scholar 

  • Zhao Z, Wang Q, Wang K, Brian K, Liu C, Gu Y (2010) Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Biores Technol 101:292–297

    Article  CAS  Google Scholar 

  • Zhou WW, Huang JX, Niu TG (2008) Isolation of an antifungal Paenibacillus strain HT 16 from locusts and purification of its medium-dependent antagonistic compound. J Appl Microbiol 105:912–919

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Chen D, Li C, Sun Q, Li L, Liu F, Shen Q, Shen B (2012) Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiol Res. doi:10.1016/j.micres.2012.01.003

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support by the Department of Science and Technology (DST), New Delhi under Women Scientist Scheme (WOS-A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urja Pandya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Pandya, U., Saraf, M. (2014). In Vitro Evaluation of PGPR Strains for Their Biocontrol Potential Against Fungal Pathogens. In: Kharwar, R., Upadhyay, R., Dubey, N., Raghuwanshi, R. (eds) Microbial Diversity and Biotechnology in Food Security. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1801-2_26

Download citation

Publish with us

Policies and ethics