Skip to main content

Ecology of Arbuscular Mycorrhizal Fungi

  • Chapter
  • First Online:
Microbial Diversity and Biotechnology in Food Security

Abstract

It is a well-established fact that arbuscular mycorrhizal (AM) fungi improve plant growth. The main effect of AM fungi in improving plant growth is through improved uptake of nutrients, especially phosphorus, which is due to exploration by the external hyphae of the soil beyond the root hair and phosphorus depletion zone. Fungal hyphae are also known to absorb phosphorus from lower concentrations compared to non-mycorrhizal roots. They also improve the uptake of minor elements like Zn, Cu, etc., and water. They also produce plant hormones, increase the activity of beneficial soil organisms in the root zone and reduce the severity of disease caused by root pathogens. Thus the benefits the plant derives from mycorrhizal inoculation seem to be enormous.

The ecology of these fungi, in tropics, is not fully understood. These fungi are geographically ubiquitous. An explanation for their remarkably wide spread distribution is that these fungi were disseminated inter-continentally prior to continental drift. Further, these fungi can grow actively, to a limited extent, spending their own energy. Passive dissemination can occur through biotic agents like earthworms, ants, wasps, etc. and abiotic agents like wind, water, etc. The various agricultural practices are known to influence the occurrence of these fungi qualitatively and quantitatively. The approaches in understanding the occurrence, dissemination, survival and persistence of these fungi in tropics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK, Robson AD (1977) The distribution and abundance of vesicular endophytes in some western Australian soils. Aust J Bot 25:515–522

    Article  Google Scholar 

  • Abbott LK, Robson AD (1991) Field management of mycorrhizal fungi. In: Kelster DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic, Dordrecht, pp 355–362

    Chapter  Google Scholar 

  • Allen MF (1991) The Ecology of Mycorrhizae. Cambridge University Press, Cambridge

    Google Scholar 

  • Allen EB, Allen MF (1980) Natural re-establishment of vesicular-arbuscular mycorrhizae following strip mine reclamation in Wyoming. J Appl Ecol 17:139–147

    Article  Google Scholar 

  • Allen MF, Swenson W, Querejeta JI, Egerton-Warburton LM, Treseder KK (2003) Ecology of mycorrhizae: a conceptual frame work for complex interactions among plants and fungi. Ann Rev Phytopathol 41:271–303

    Article  CAS  Google Scholar 

  • Bagyaraj DJ (1991) Ecology of vesicular-arbuscular mycorrhizae. In: Arora DK, Rai B, Mukerji KG, Knudsen GR (eds) Handbook of applied mycology. Marcel Decker, New York, pp 3–34

    Google Scholar 

  • Bagyaraj DJ (2011) Microbial biotechnology for sustainable agriculture, horticulture and forestry. New India Publishing Agency, New Delhi

    Google Scholar 

  • Bagyaraj DJ, Ravindra TP (1997) Distribution and dissemination of VA mycorrhizal fungi. In: Tiwari JP, Saxena G, Mittal N, Tewari I, Chamola BP (eds) New approaches in microbial ecology. Aditya Books, New Delhi, pp 167–182

    Google Scholar 

  • Bagyaraj DJ, Manjunath A, Patil RB (1979) Occurrence of vesicular arbuscular infection in some tropical aquatic plants. Trans Br Mycol Soc 73:164–167

    Article  Google Scholar 

  • Baxter FP, Hole FD (1966) The ant that ploughed the Praire. Crop Soil 19:11–13

    Google Scholar 

  • Blaszkowski J (1994) Comparative studies on the occurrence of arbuscular fungi and mycorrhizae (Glomales) in cultivated and uncultivated soils of Poland. Acta Mycol 28:93–140

    Google Scholar 

  • Boddington CL, Dodd JC (2000) The effect of agriculture practices on the development of indigenous arbuscular mycorrhizal fungi-II. Studies in experimental microcosms. Plant Soil 218:145–157

    Article  CAS  Google Scholar 

  • Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82:3057–3068

    Google Scholar 

  • Machado C, Bagyaraj DJ (1995) Mycorrhization bacteria and its influence on growth of cowpea. In: Adholeya A, Sujan S (eds) Mycorrhizae, Biofertilizers for the Future. Tata Energy Research Institute Pub, New Delhi, pp 192–196

    Google Scholar 

  • Carpenter FL, Palacioss S, Gonzalez E, Schroeder M (2001) Land-use and erosion of a Costa Rican Ultisol affects soil chemistry, mycorrhizal fungi and early regeneration. For Ecol Manag 144:1–17

    Article  Google Scholar 

  • Clarke C, Mosse B (1981) Plant growth response to vesicular arbuscular mycorrhiza-XII. Field inoculation responses of barley at two soil P levels. New Phytol 87:695–703

    Article  CAS  Google Scholar 

  • Delinge J, Queenedey A, Blum MS (1981) The enemies and defense mechanisms of termites. In: Herman HR (ed) Social insects. Academic, London, pp 1–76

    Google Scholar 

  • Fogel R, Trappe JM (1978) Fungal consumption (Mycophagy) by small animals. Northwest Sci 52:1–13

    Google Scholar 

  • Frank AB (1885) Uber die out Wurzetsymbiose berohende ernahausing gewisser Baume durch utnerimdinche. Berdent Bot Gessel 3:128–145

    Google Scholar 

  • Furlan V, Fortin JA (1977) Effects of light intensity on the formation of vesicular arbuscular endomycorrhizas on Allium cepa by Gigaspora calospora. New Phytol 79:335–340

    Article  Google Scholar 

  • Galvez L, Douds DD Jr, Drinkwater LE, Wagoner P (2001) Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant Soil 228:299–308

    Article  CAS  Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V (1986) Progress and headaches in endomycorrhizae biotechnology. Symbiosis 2:139–149

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Hall IRS (1977) Species and mycorrhizal infections of New Zealand endogonaceae. Trans Br Mycol Soc 68:341–356

    Article  Google Scholar 

  • Hansen RM, Uckert PN (1970) Dietary similarity of some primary consumers. Ecology 51:641–680

    Article  Google Scholar 

  • Harinikumar KM, Bagyaraj DJ (1988a) The effect of season on VA mycorrhiza of leucaena and mango in semi-arid tropic. Arid Soil Res Rehabil 7:139–143

    Google Scholar 

  • Harinikumar KM, Bagyaraj DJ (1988b) Effect of crop rotation on native VA mycorrhizal propagules in soil. Plant Soil 110:77–80

    Article  Google Scholar 

  • Harinikumar KM, Bagyaraj DJ (1989) Effect of cropping sequences, fertilizers and FYM on VA mycorrhizal fungi. Biol Fertil Soils 7:173–175

    Article  Google Scholar 

  • Harinikumar KM, Bagyaraj DJ (1994) Potential of earthworms, ants, millipedes and termites in dissemination of vesicular arbuscular mycorrhizal fungi in soil. Biol Fertil Soils 18:115–118

    Article  Google Scholar 

  • Harinikumar KM, Bagyaraj DJ (1995) Spread of vesicular arbuscular mycorrhizal hyphae in soil. Microbiol Res 150:77–80

    Article  Google Scholar 

  • Harinikumar KM, Bagyaraj DJ, Mallesha BC (1990) Effect of intercropping and organic soil amendments on native VA mycorrhiza in semi arid tropics. Arid Soil Res Rehabil 4:193–197

    Article  Google Scholar 

  • Hayman DS (1974) Plant growth responses to vesicular arbuscular mycorrhiza-VI. Effect of light and temperature. New Phytol 73:71–80

    Article  Google Scholar 

  • Hayman DS (1975) The occurrence of mycorrhiza in crops as affected by soil fertility. In: Sanders FE, Mosse B, Tinker PS (eds) Endomycorrhizas. Academic, London, pp 495–509

    Google Scholar 

  • Hayman DS (1983) The physiology of vesicular arbuscular endomycorrhizal symbiosis. Can J Bot 61:944–963

    Article  Google Scholar 

  • Hetrick BDA (1984) Ecology of VA mycorrhizal fungi. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhizae. CRC, Boca Raton, pp 35–55

    Google Scholar 

  • Hirrel MC, Mehravaran H, Gerdemann JW (1978) Vesicular arbuscular mycorrhizae in Chenopodiaceae and Cruciferaceae: do they occur? Can J Bot 56:2813–2817

    Article  Google Scholar 

  • Hodge A (2000) Microbial ecology of arbuscular mycorrhiza. FEMS Microbiol Ecol 32:91–96

    Article  CAS  Google Scholar 

  • Hodge A, Helgasson T, Fitter AH (2010) Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol 3:267–273

    Article  Google Scholar 

  • Howeler RH (1980) Soil related cultural practices for cassava. In: Webes EJ, Toro MJC, Graham M (eds) Cassava cultural practices, Proc. of a workshop held at Salvador, Bahia, March 18–21, CAB Int, pp 159–169

    Google Scholar 

  • Jasper PA, Robson AD, Abbott LB (1979) Phosphorus and the formation of vesicular arbuscular mycorrhiza on the growth and metabolism of sweet orange. New Phytol 90:665–670

    Google Scholar 

  • Ji B, Bentivenga SP, Casper BB (2010) Evidence for ecological matching of whole fungal communities to the local plant-soil environment. Ecology 91:3037–3046

    Article  PubMed  Google Scholar 

  • Johnson NC, Wedin DA (1997) Soil carbon, nutrients, and mycorrhizae during conversion of dry tropical forest to grassland. Ecol Appl 7:171–182

    Article  Google Scholar 

  • Kendrick B, Berch S (1985) Mycorrhizae: applications in agriculture and forestry. In: Robinson CW (ed) Comprehensive biotechnology, vol 4. Pergamon, Oxford, pp 109–150

    Google Scholar 

  • Khan AG (1978) Vesicular arbuscular mycorrhizas in plants colonizing black wastes from bituminous coal mining in the Illawarra region of New South Wales. New Phytol 81:53–63

    Article  Google Scholar 

  • Koske RE (1981) A preliminary study of interactions between species of VA fungi in a sand dune. Trans Br Mycol Soc 76:411–416

    Article  Google Scholar 

  • Krishna KR, Bagyaraj DJ (1982) Effect of vesicular arbuscular mycorrhiza and soluble phosphate on Abelmoscus esculentus (L.) Moench. Plant Soil 64:209–213

    Article  CAS  Google Scholar 

  • Lakshmipathy R, Bagyaraj DJ, Balakrishna AN (2007) Can agricultural practices and land use patterns affect arbuscular mycorrhizal fungal population and diversity? In: Ganguly BN, Deshmukh SK (eds) Fungi: multifaceted microbes. Anamaya, New Delhi, pp 304–315

    Google Scholar 

  • Lovelock CE, Andersen K, Morton JB (2003) Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 132:268–279

    Google Scholar 

  • MacMohan JA, Warner A (1984) Dispersal of mycorrhizal fungi: processes and agents. In: Williams SE, Allen MF (eds) VA mycorrhizae and reclamation of arid and semiarid lands. University of Wyoming Publications, Wyoming, pp 24–41

    Google Scholar 

  • Mallesha BC, Bagyaraj DJ (1991) Season favouring sporulation of VA mycorrhizal fungi in cardamom plantations. J Soil Biol Ecol 11:75–78

    Google Scholar 

  • McGonigle TP, Miller MH (1993) Mycorrhizal development and phosphorus adsorption in maize under conventional and reduced tillage. Soil Sci Soc Am J 57:1002–1006

    Article  CAS  Google Scholar 

  • McIveen WD, Cole H (1976) Spore dispersal of Endogonaceae by worms, ants, wasps and birds. Can J Bot 54:1486–1489

    Article  Google Scholar 

  • Meharg AA, Cairney JWG (2000) Co-evaluation of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30:69–112

    Article  CAS  Google Scholar 

  • Menge JA (1982) Effect of soil fumigants and fungicides on vesicular arbuscular fungi. Phytopathology 72:1125–1132

    Google Scholar 

  • Menge JA (1984) Inoculum production. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhizae. CRC, Boca Raton, pp 188–189

    Google Scholar 

  • Menge JA, Steirle D, Bagyaraj DJ, Jhonson ELV, Leonard TT (1978) Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol 80:575–578

    Article  CAS  Google Scholar 

  • Miller RM, Jastrow JD (1992) The application of VA mycorrhizae to ecosystem restoration. In: Allen MF (ed) Mycorrhizal Functioning. Chapman and Hall, London, pp 438–467

    Google Scholar 

  • Mosse B (1977) Plant growth responses of vesicular-arbuscular mycorrhiza-IV. Soil given additional phosphorus. New Phytol 72:127–136

    Article  Google Scholar 

  • Mosse B (1981) Vesicular Arbuscular Mycorrhizal Research for Tropical Agriculture. Honolulu University of Hawaii Press, Hawaii, p 54

    Google Scholar 

  • Mosse B, Stribley DP, Le Tacon F (1981) Ecology of mycorrhizae and mycorrhizal fungi. Adv Microb Ecol 5:137–209

    Article  Google Scholar 

  • Mosse B, Warner A, Clarke CA (1982) Plant growth responses of vesicular-arbuscular mycorrhiza-XIII. Spread of an introduced VA endophyte in the field and residual growth effects of inoculation in the second year. New Phytol 90:521–528

    Article  Google Scholar 

  • Nemec S (1980) Effects of eleven fungicides on endomycorrhizal development in sour oranges. Cad J Bot 58:522–527

    Article  CAS  Google Scholar 

  • Nemec S, Tucker D (1983) Effects of herbicides on endomycorrhizal fungi in Florida citrus (Citrus sp) soils. Weed Sci 31:417–431

    Google Scholar 

  • Ocampo IA, Hayman DS (1980) Effects of pesticides on mycorrhiza in field grown barley, maize and potatoes. Trans Br Mycol Soc 74:413–416

    Article  CAS  Google Scholar 

  • Oehl F, Sieverding E, Ineichen L, Mader P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl Environ Microbiol 69:2816–2824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Picone CM (2000) Diversity and abundance of arbuscular mycorrhizal fungus spores in tropical forest and pasture. Biotropica 32:734–750

    Article  Google Scholar 

  • Ponder F (1980) Rabbits and grasshoppers: vectors of endomycorrhizal fungi of new coal mine spoil. Research Note NC- 250, USDA, North Central Forest Experiment Station, Newtown Square, Pennsylvania, USA

    Google Scholar 

  • Powell CL (1976) Development of mycorrhizal infections from Endogone spores and infected root segments. Trans Br Mycol Soc 66:439–445

    Article  Google Scholar 

  • Powell CL (1979) Spread of mycorrhizal fungi through soil. N Z J Agric Res 22:335–339

    Article  Google Scholar 

  • Powell CL (1980) Mycorrhizal infectivity of eroded soils. Soil Biol Biochem 12:247–251

    Article  Google Scholar 

  • Praveen Kumar KA, Bagyaraj DJ (1999) Mass production of arbuscular mycorrhiza as influenced by some agrochemicals. Proc Nat Acad Sci India 69:61–66

    Google Scholar 

  • Raj J, Bagyaraj DJ, Manjunath A (1981) Influence of soil inoculation with arbuscular mycorrhiza and a phosphate dissolving bacterium on plant growth and 32P- uptake. Soil Biol Biochem 13:105–108

    Article  CAS  Google Scholar 

  • Redhead JF (1977) Endotrophic mycorrhizas in Nigeria: species of the Endogonaceae and their distribution. Trans Br Mycol Soc 69:275–280

    Article  Google Scholar 

  • Rilling MC, Ramsey PW, Morris S, Paul EA (2003) Glomalin, an arbuscular mycorrhizal fungal soil protein, response to land use changes. Plant Soil 253:293–299

    Article  Google Scholar 

  • Rothwell FM, Holt C (1978) Vesicular-arbuscular mycorrhizae established with Glomus fasciculatum spores isolated from the faeces of cricetine mice. Research Note NC- 259, USDA, North Central Forest Experiment Station, Newtown Square, Pennsylvania, USA

    Google Scholar 

  • Schenck NC, Kinloch RA (1980) Incidence of mycorrhizal fungi on six field crops in mono culture on a newly cleared woodland site. Mycologia 72:445–455

    Article  Google Scholar 

  • Sieverding E, Leihner DE (1984) Influence of crop rotation and intercropping of cassava with legume on VA mycorrhizal symbiosis of cassava. Plant Soil 80:143–146

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Spradbery JP (1973) Wasps. An account of the biology and natural history of solitary and social wasps. Sidgwicks and Jackson, London

    Google Scholar 

  • Sreenivasa MN, Bagyaraj DJ (1988) Chloris gayana (Rhodes grass) a better host for mass production of Glomus fasciculatum inoculum. Plant Soil 106:109–112

    Article  Google Scholar 

  • Sreenivasa MN, Bagyaraj DJ (1989) Suitable form and level of phosphorus for mass production of the VA mycorrhizal fungus, Glomus fasciculatum. Zentralbl Mikrobiol 144:34–36

    Google Scholar 

  • Sreenivasa MN, Bagyaraj DJ (1990) Suitable source and level of nitrogen for mass production of VA mycorrhizal fungi. In: Jalalli BL, Chand A (eds) Current trends in mycorrhizal research. Haryana Agril. Univ. Press, Hissar, pp 35–36

    Google Scholar 

  • Sturmer SL (2012) A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. Mycorrhiza 22:247–258

    Article  PubMed  Google Scholar 

  • Stutz JC (2003) Preliminary assessment of arbuscular mycorrhizal fungal diversity and community structure in an urban ecosystem. Mycorrhiza 13:319–326

    Article  CAS  PubMed  Google Scholar 

  • Taber RA (1982) Occurrence of Glomus spores in weed seeds in soil. Mycologia 74:515–520

    Article  Google Scholar 

  • Thaxter R (1992) A revision of Endogonaceae. Proc Am Acad Arts Sci 57:293–341

    Google Scholar 

  • Tommerup IC, Carter DJ (1982) Dry separation of microorganisms from soil. Soil Biol Biochem 14:69–71

    Article  Google Scholar 

  • Trappe JM (1977) Biogeography of hypogeous fungi: trees, mammals and continental drift. In: Bigelow HE, Simmons EG (eds) Abstracts 2nd International Mycology Congress. University of South Florida, Tampa, pp 675

    Google Scholar 

  • Trappee JM, Masser C (1976) Germination of Glomus marcrocarpus (Endogonaceae) after passage through a rodent digestive tract. Mycologia 68:433–436

    Article  Google Scholar 

  • Trappe JM, Monila R, Castellano M (1984) Reactions of mycorrhizal fungi and mycorrhiza formation to pesticides. Ann Rev Phytopathol 22:331–359

    Article  CAS  Google Scholar 

  • Wallace HR (1978) Dispersal in time and space: soil pathogens. In: Horsefall JS, Cowling EB (eds) Plant disease: an advanced treatise, vol 2. Academic, New York, pp 181–202

    Google Scholar 

  • Wang GM, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Warner A, Mosse B (1982) Factors affecting the spread of vesicular-arbuscular mycorrhizal fungi in soil-I Root density. New Phytol 90:529–536

    Article  Google Scholar 

  • Warner MJ, Allen MF, MacMohan JA (1987) Dispersal agents of VA mycorrhizal fungi in disturbed arid ecosystem. Mycologia 79:721–730

    Article  Google Scholar 

  • Wolfe AL (2002) Species diversity and community composition of arbuscular mycorrhizal fungi in tropical forest fragments and adjacent pastures. 87th Annual Meeting of the Ecological Society of America and Annual International Conference of the Society for Restoration, Tucson, 4–9 Aug, pp 62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Bagyaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Bagyaraj, D. (2014). Ecology of Arbuscular Mycorrhizal Fungi. In: Kharwar, R., Upadhyay, R., Dubey, N., Raghuwanshi, R. (eds) Microbial Diversity and Biotechnology in Food Security. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1801-2_10

Download citation

Publish with us

Policies and ethics