The Genetics of Host–Parasite Interaction

  • Govind Singh Saharan
  • Prithwi Raj Verma
  • Prabhu Dayal Meena
  • Arvind Kumar


Studies on the genetics of host-parasite interactions in white rust (WR) diseases have focused on the level of specificity among races of pathogen and genotypes of related host species. Even within the confines of race-cultivar specificity, the studies have been one-side in that no genetic information has been generated on Albugo, the causal organism. The resistance in host is governed by one, two or more dominant genes (AC-7-1, AC-7-2, AC-7-3), additive genes with epistatic effects, and single recessive genes (WPr) along with a single gene (WPR 4) conferring broad spectrum resistance to reces, AC-2,4,7 and 9. The inheritance of virulence in Albugo-Brassica system is controlled by a single dominant avirulence gene AC-2. Resistant genes effective against one or more reces of A. candida have been mapped and identified on the chromosome of B. juncea, B. rapa, B. napus and Arabidopsis thaliana. Slow white rusting, induced systemic resistance and plant defence resistant genes have been identified.


Salicylic Acid Amplify Fragment Length Polymorphism Single Dominant Gene Area Under Disease Progress Curve Disease Severity Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aarts, M. G. M., Hekkert, B. L., Holub, E. B., Beynon, J. L., Stiekema, W. J., & Pereira, A. (1998). Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Molecular Plant-Microbe Interaction, 11, 251–258.Google Scholar
  2. Adhikari, T. B., Liu, J. Q., Mathur, S., Wu, C. X., & Rimmer, S. R. (2003). Genetic and molecular analyses in crosses of race 2 and race 7 of A. candida. Phytopathology, 93, 959–965.PubMedGoogle Scholar
  3. AICRPRM (All India Co-ordinated Research Project on Rapeseed-Mustard). 2009. Annual Report, Directorate of Rapeseed-Mustard Research, Bharatpur, India pp. PP 1- PP 28.Google Scholar
  4. Austin, M. J., Muskett, P., Kahn, K., Feys, B. L., Jones, J. D., & Parker, J. E. (2002). Regulatory role of SGT1 in early R gene-mediated plant defenses. Science, 295, 2077–2080.PubMedGoogle Scholar
  5. Axtell, M. J., & Staskawicz, B. J. (2003). Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell, 112, 369–377.PubMedGoogle Scholar
  6. Bains, S. S. (1993). Differential reaction of leaves and young flowers of different cruciferous crops to Albugo candida. Plant Disease Research, 8, 70–72.Google Scholar
  7. Bansal, V. K., Thiagarajah, M. R., Stringam, G. R., & Tewari, J. P. (1999). Inheritance of partial resistance to race 2 of Albugo candida in canola-quality mustard (Brassica juncea) and its role in resistance breeding. Plant Pathology, 48, 817–822.Google Scholar
  8. Bansal, V. K., Tewari, J. P., Stringam, G. R., & Thiagarajah, M. R. (2005). Histological and inheritance studies of partial resistance in the B. napus-A. candida host-pathogen interaction. Plant Breeding, 124, 27–32.Google Scholar
  9. Bartsch, M., Gobbato, E., Bednarek, P., Debey, S., Schultze, J. L., Bautor, J., & Parker, J. E. (2006). Salicylic acid-independent enhanced disease susceptibility 1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the nudix hydrolase NUDT7. The Plant cell, 18, 1038–1051.PubMedCentralPubMedGoogle Scholar
  10. Bittner-Eddy, P. D., Crute, I. R., Holub, E. B., & Beynon, J. L. (2000). RPP13 is a simple locus in Arabidopsis for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. The Plant Journal, 21, 177–188.PubMedGoogle Scholar
  11. Bonnet, A. (1981). Resistance to white rust in radish (Raphanus sativus L.). Cruciferae NewsLetter, 6, 60.Google Scholar
  12. Borhan, M. H., Brose, E., Beynon, J. L., & Holub, E. B. (2001). White rust (A. candida) resistance loci on three Arabidopsis Chromosomes are closely linked to downy mildew (Peronospora parasitica) resistance loci. Molecular Plant Pathology, 2, 87–95.PubMedGoogle Scholar
  13. Borhan, M. H., Holub, E. B., Beynon, J. L., Rozwadowski, K., & Rimmer, S. R. (2004). The Arabidopsis TIR-NB-LRR Gene RAC1 confers resistance to Albugo candida (white rust) and is dependent on EDS1 but not PAD4. Molecular Plant-Microbe Interaction, 17, 711–719.Google Scholar
  14. Borhan, M. H., Gunn, N., Cooper, A., Gulden, S., Tor, M., Rimmer, S. R., & Holub, E. B. (2008). WRR4 encodes a TIR-NB-LRR protein that confers broad-spectrum white rust resistance in Arabidopsis thaliana to four physiological races of Albugo candida. Molecular Plant-Microbe Interaction, 21, 757–768.Google Scholar
  15. Botella, M. A., Parker, J. E., Frost, L. N., Bittner-Eddy, P. D., Beynon, J. L., Daniels, M. J., Holub, E. B., & Jones, J. D. G. (1998). Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. The Plant cell, 10, 1847–1860.PubMedCentralPubMedGoogle Scholar
  16. Butruille, D.V., Guries, R.P., & Osborn, T.C. (1999). Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics, 153, 949–964.Google Scholar
  17. Century, K. S., Shapiro, A. D., Repetti, P. P., Dahlbeck, D., Holub, E. B., & Staskawicz, B. J. (1997). NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science, 278, 1963–1965.PubMedGoogle Scholar
  18. Cheung, W. Y., Gugel, R. K., & Landry, B. S. (1998). Identification of RFLP markers linked to the white rust resistance gene (Acr) in mustard [Brassica juncea (L.) Czern. & Coss.]. Genome, 41, 626–628.Google Scholar
  19. Choi, D., & Priest, M. J. (1995). A key to the genus Albugo. Mycotaxon, 53, 261–272.Google Scholar
  20. Choi, Y. J., Hong, S. B., & Shin, H. D. (2006). Genetic diversity within the A. candida complex (Peronosporales, Oomycota) inferred from phylogenetic analysis of ITS rDNA and COX2 mtDNA sequences. Molecular phylogenetics and evolution, 40, 400–409.PubMedGoogle Scholar
  21. Coffey, M. D. (1975). Ultrastructural features of the haustorial apparatus of the white blister fungus A. candida. Canadian Journal of Botany, 53, 1285–1299.Google Scholar
  22. Cooke, D. E. L., Drenth, A., Duncan, J. M., Wagels, G., & Brasier, C. M. (2000). A molecular phylogeny of Phytophthora and related Oomycetes. Fungal Genetics and Biology, 30, 17–32.PubMedGoogle Scholar
  23. Cooper, A. J., Latunde-Dada, A. O., Woods-To¨r, A., Lynn, J., Lucas, J. A., Crute, I. R., & Holub, E. B. (2008). Basic compatibility of Albugo candida in Arabidopsis thaliana and Brassica juncea causes broad-spectrum suppression of innate immunity. Molecular Plant-Microbe Interaction, 21, 745–756.Google Scholar
  24. Dangl, J. L., & Jones, J. D. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411, 826–833.PubMedGoogle Scholar
  25. Delaney, T. P., Friedrich, L., & Ryals, J. A. (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proceedings of National Academy of Sciences U.S.A, 92, 6602–6606.Google Scholar
  26. Delwiche, P. A., & Williams, P. H. (1974). Resistance to A. candida race 2 in Brassica sp. Proceedings of the American Phytopathological Society, 1, 66 (Abstr.).Google Scholar
  27. Delwiche, P. A., & Williams, P. H. (1976). Identification of marker genes in Brassica nigra. Proceedings of the American Phytopathological Society, 3, 234c (Abstr.).Google Scholar
  28. Delwiche, P. A., & Williams, P. H. (1977). Genetic studies in Brassica nigra (L.) Koch. Cruciferae NewsLetter, 2, 39.Google Scholar
  29. Delwiche, P. A., & Williams, P. H. (1981). Thirteen marker genes in Brassica nigra. The Journal of heredity, 72, 289–290.Google Scholar
  30. Dodds, P., Lawrence, G., & Ellis, J. (2001). Six amino acid changes confined to the Leucine-Rich Repeat beta-Strand/beta-Turn motif determine the difference between the P and P2 rust resistance specificities in Flax. The Plant cell, 13, 163–178.PubMedCentralPubMedGoogle Scholar
  31. Dong, X. (2001). Genetic dissection of systemic acquired resistance. Current Opinion in Plant Biology, 4, 309–314.PubMedGoogle Scholar
  32. Ebrahimi, A. G., Delwiche, P. A., & Williams, P. H. (1976). Resistance in Brassica juncea to Peronospora parasitica and Albugo candida race 2. Proceedings of the American Phytopathological Society, 3, 273.Google Scholar
  33. Edwards, M., & Williams, P. H. (1982). Selection for quantitatively inherited resistance to Albugo candida race 2 in Brassica campestris, CGS-1. Cruciferae NewsLetter, 7, 66–67.Google Scholar
  34. Edwards, M. D., & Williams, P. H. (1987). Selection of minor gene resistance to Albugo candida in rapid-cycling population of Brassica campestris. Phytopathology, 77, 527–532.Google Scholar
  35. Ellis, J. G., Lawrence, G. J., Luck, J. E., & Dodds, P. N. (1999). Identification of regions in alleles of the flax rust resistance gene L that determines differences in gene-for-gene specificity. The Plant cell, 11, 495–506.PubMedCentralPubMedGoogle Scholar
  36. Ellis, J., Dodds, P., & Pryor, T. (2000). Structure, function and evolution of plant disease resistance genes. Current Opinion in Plant Biology, 3, 278–284.PubMedGoogle Scholar
  37. Eulgem, T., Weigman, V. J., Chang, H. S., McDowell, J. M., Holub, E. B., Glazebrook, J., Zhu, T., & Dangl, J. L. (2004). Three genetically separable R-gene-signaling pathways converge to regulate a largely overlapping transcriptome. Plant Physiology, 135, 1129–1144.PubMedCentralPubMedGoogle Scholar
  38. Falk, A., Feys, B. J., Frost, L. N., Jones, J. D., Daniels, M. J., & Parker, J. E. (1999). EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proceedings of the National Academy of Sciences of the United States of America, 96, 3292–3297.Google Scholar
  39. Fan, Z., Rimmer, S. R., & Stefansson, B. R. (1983). Inheritance of resistance to Albugo candida in rape (Brassica napus L.). Canadian Journal of Genetics and Cytology, 25, 420–424.Google Scholar
  40. Ferreira, M. E., Williams, P. H., & Osborn, T. C. (1994). RFLP mapping of Brassica napus using doubled haploid lines. Theoretical and applied genetics, 89, 615–621.PubMedGoogle Scholar
  41. Ferreira, M. E., Williams, P. H., & Osborn, T. C. (1995). Mapping of locus controlling resistance to Albugo candida in Brassica napus using molecular markers. Phytopathology, 85, 218–220.Google Scholar
  42. Feys, B. J., Moisan, L. J., Newman, M. A., & Parker, J. E. (2001). Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. The EMBO Journal, 20, 5400–5411.PubMedCentralPubMedGoogle Scholar
  43. Gadewadikar, P. N., Bhadouria, S. S., & Bartaria, A. M. (1993). Inheritance of resistance to white rust (Albugo candida) disease in Indian mustard (B. juncea L.) Czern & Coss. In Natl. Sem., Oilseeds Research Development in India: Status and Strategies. Aug, 2–4, 1993.Google Scholar
  44. Glazebrook, J., Zook, M., Mert, F., Kagan, I., Rogers, E. E., Crute, I. R., Holub, E. B., Hammerschmidt, R., & Ausubel, F. M. (1997). Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics, 146, 381–392.PubMedCentralPubMedGoogle Scholar
  45. Gupta, Kiran & Saharan, G. S. (2002). Identification of pathotypes of Albugo candida with stable characteristic symptoms on Indian mustard. Journal of Mycology and Plant Pathology 32, 46-51.Google Scholar
  46. Gomez-Gomez, L., & Boller, T. (2000). FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell, 5, 1003–1011.PubMedGoogle Scholar
  47. Gupta, K., Prem, D., Nashaat, N. I., & Agnihotri, A. (2006). Response of interspecific Brassica juncea/Brassica rapa hybrids and their advanced progenies to Albugo candida (white blister). Plant Pathology, 55, 679–689.Google Scholar
  48. Hammond-Kosack, K. E., & Jones, J. D. G. (1997). Plant disease resistance genes. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 575–607.PubMedGoogle Scholar
  49. Hill, C. B., Crute, I. R., Sherriff, C., & Williams, P. H. (1988). Specificity of Albugo candida and Peronospora parasitica pathotypes toward rapid-cycling crucifers. Cruciferae NewsLetter, 13, 112.Google Scholar
  50. Holub, E. B. (2001). The arms race is ancient history in Arabidopsis, the wildflower. Nature Reviews. Genetics, 2, 516–527.PubMedGoogle Scholar
  51. Holub, E. B. (2007). Natural variation in innate immunity of a pioneer species. Current Opinion in Plant Biology, 10, 415–424.PubMedGoogle Scholar
  52. Holub, E. B., Brose, E., Tor, M., Clay, C., Crute, I. R., & Beynon, J. L. (1995). Phenotypic and genotypic variation in the interaction between Arabidopsis thaliana and Albugo candida. Molecular Plant-Microbe Interactions, 8, 916–928.PubMedGoogle Scholar
  53. Hougas, R. W., Rieman, G. H., & Stokes, G. W. (1952). Resistance to white rust in horseradish seedlings. Phytopathology, 42, 109–110.Google Scholar
  54. Hulbert, S. H., Webb, C. A., Smith, S. M., & Sun, Q. (2001). Resistance gene complexes: Evolution and utilization. Annual Review of Phytopathology, 39, 285–312.PubMedGoogle Scholar
  55. Humaydan, H. S., & Williams, P. H. (1976). Inheritance of seven characters in Raphanus sativus L. HortScience, 11, 146–147.Google Scholar
  56. Jat, R. R. (1999). Pathogenic variability and inheritance of resistance to A. candida in oilseed Brassica. Ph. D. Thesis, CCSHAU, Hisar, 129 pp.Google Scholar
  57. Jat, R. R., & Saharan, G. S. (1999). Inheritance of resistance in interspecific crosses between Indian mustard [Brassica juncea (L.) Czern. & Coss.] and rape (B. napus L.) to Albugo candida (Pers. Ex. Hook). Inidan Phytopathol, 52, 319.Google Scholar
  58. Jirage, D., Tootle, T. L., Reuber, T. L., Frost, L. N., Feys, B. J., Parker, J. E., Ausubel, F. M., & Glazebrook, J. (1999). A. thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 96, 13583–13588.Google Scholar
  59. Jones, D. A., & Jones, J. D. G. (1997). The role of leucine-rich repeat proteins in plant defenses. Advances in Botanical Research, 24, 89–167.Google Scholar
  60. Kaur, P., Sivasithamparam, K., Li, H., & Barbetti, M. J. (2010). Host-pathogen interactions in the mustard-white rust pathosystem: Protein expression profiling. Phytopathology, 100, S60.Google Scholar
  61. Klessig, D. F., Malamy, J., Hennig, J., Sanchez-Casas, P., Indulski, J., Grynkiewicz, G., & Chen, Z. (1994). Induction, modification, and perception of the salicylic acid signal in plant defense. Cellular and Molecular Life Sciences, 60, 219–229.Google Scholar
  62. Kobe, B., & Deisenhofer, J. (1994). The leucine-rich repeat: A versatile binding motif. Trends in Biochemical Sciences, 19, 415–421.PubMedGoogle Scholar
  63. Kobe, B., & Deisenhofer, J. (1995). Proteins with leucine-rich repeats. Current Opinion in Structural Biology, 5, 409–416.PubMedGoogle Scholar
  64. Kole, C., Williams, P. H., Rimmer, S. R., & Osborn, T. C. (2002). Linkage mapping of genes controlling resistance to white rust (A. candida) in B. rapa (syn. campestris) and comparative mapping to B. napus and A. thaliana. Genome, 45, 22–27.PubMedGoogle Scholar
  65. Kole, C., Teutonico, R., Mengistu, A., Williams, P. H., & Osborn, T. C. (1996). Molecular mapping of a locus controlling resistance to Albugo candida in Brassica rapa. Phytopatholgy, 86, 367–369.Google Scholar
  66. Kombrink, E., & Schmelzer, E. (2001). The hypersensitive response and its role in local and systemic disease resistance. European Journal of Plant Pathology, 107, 69–78.Google Scholar
  67. Krishnia, S., K., Saharan, G. S., & Singh, D. (2000). Genetic variation for multiple disease resistance in the families of interspecific cross of Brassica juncea x B. carinata. Cruciferae Newsletter, 22, 51–53.Google Scholar
  68. Kumar, G. R., Bhat, S. R., Shyam P., & Chopra, V. L. (2003). Development of novel white rust resistant genetic stocks in crop Brassica by somatic hybridization. Plant Biotechnology 2002 and beyond. Proceedings of the 10th IAPTC & B Congress, Orlando, Florida, USA, 23–28 June, 2002. Kluwer Academic Publishers, Dordrecht, Netherlands: 555–558.Google Scholar
  69. Lakra, B. S., & Saharan, G. S. (1988b). Influence of host resistance on colonization and incubation period of A. candida in mustard. Cruciferae Newsletter, 13, 108–109.Google Scholar
  70. Leckie, F., Mattei, B., Capodicasa, C., Hemmings, A., Nuss, L., Aracri, B., De Lorenzo, G., & Cervone, F. (1999). The specificity of polygalacturonase-inhibiting protein (PGIP): A single amino acid substitution in the solvent exposed beta-strand/beta-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. European Molecular Biology Organization Journal, 18, 2352–2363.Google Scholar
  71. Liu, Q., & Rimmer, S. R. (1992). Inheritance of resistance in Brassica napus to an Ethiopian isolate of Albugo candida from Brassica carinata. Canadian Journal of Plant Pathology, 14, 116–120.Google Scholar
  72. Liu, J. Q., Rimmer, S. R., & Scarth, R. (1989). Histopathology of compatibility and incompatibility between oilseed rape and Albugo candida. Plant Pathology, 38, 176–182.Google Scholar
  73. Liu, J. Q., Rimmer, S. R., Scarth, R., & McVetty, P. B. E. (1987). Confirmation of a digenic model of inheritance of resistance to Albugo candida race 7 in Brassica napus. Proceedings of the 7th International Rapeseed Congress, Poznam, Polland: 1204–1209.Google Scholar
  74. Liu, J. Q., Parks, P., & Rimmer, S. R. (1996). Development of monogenic lines for resistance to Albugo candida from a Canadian Brassica napus cultivar. Phytopathology, 86, 1000–1004.Google Scholar
  75. Luck, J. E., Lawrence, G. J., Dodds, P. N., Shepherd, K. W., & Ellis, J. G. (2000). Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. The Plant cell, 12, 1367–1377.PubMedCentralPubMedGoogle Scholar
  76. Mackey, D., Holt, B. F., Wiig, A., & Dangl, J. L. (2002). RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell, 108, 743–754.PubMedGoogle Scholar
  77. Mackey, D., Belkhadir, Y., Alonso, J. M., Ecker, J. R., & Dangl, J. L. (2003). Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell, 112, 379–389.PubMedGoogle Scholar
  78. Mani, N., Gulati, S. C., Raman, R., & Raman, R. (1996). Breeding for genetic resistance to white rust in Indian mustard. Crop Improvement, 23, 75–79.Google Scholar
  79. Massand, P. P., Yadava, S. K., Sharma, P., Kaur, A., Kumar, A., Arumugam, N., Sodhi, Y. S., Mukhopadhyay, A., Gupta, V., Pradhan, A. K., & Pental, D. (2010). Molecular mapping reveals two independent loci conferring resistance to Albugo candida in the east European germplasm of oilseed mustard Brassica juncea. Theoretical and Applied Genetics, 121, 137–145.Google Scholar
  80. McDowell, J. M., Dhandaydhm, M., Long, T. A., Aarts, M. G. M., Goff, S., Holub, E. B., & Dangl, J. L. (1998). Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. The Plant Cell, 10, 1861–1874.PubMedCentralPubMedGoogle Scholar
  81. McDowell, J. M., Cuzick, A., Can, C., Beynon, J. L., Dangl, J. D., & Holub, E. B. (2000). Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1, and salicylic acid accumulation. The Plant Journal: for Cell and Molecular Biology, 22, 523–529.Google Scholar
  82. Mellersh, D. G., & Heath, M. C. (2003). An investigation into the involvement of defense signaling pathways in components of the nonhost resistance of Arabidopsis thaliana to rust fungi also reveals a model system for studying rust fungal compatibility. Molecular Plant-Microbe Interaction, 16, 398–404.Google Scholar
  83. Melotto, M., Underwood, W., Koczan, J., Nomura, K., & He, S. Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell, 126, 969–980.PubMedGoogle Scholar
  84. Meyers, B. C., Shen, K. A., Rohani, P., Gaut, B. S., & Michelmore, R. W. (1998). Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. The Plant Cell, 10, 1833–1846.PubMedCentralPubMedGoogle Scholar
  85. Meyers, B. C., Kozik, A., Griego, A., Kuany, H., & Michelmore, R. W. (2003). Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. The Plant Cell, 15, 809–834.PubMedCentralPubMedGoogle Scholar
  86. Moncalvo, J. M., Wang, H. H., & Hseu, R. S. (1995). Phylogenetic relationships in Ganoderma inferred from the internal transcribed spacer and 25S ribosomal DNA sequences. Mycologia, 87, 223–238.Google Scholar
  87. Morel, J., & Dangl, J. L. (1997). The hypersensitive response and the induction of cell death in plants. Cell Death and Differentiation, 4, 671–683.PubMedGoogle Scholar
  88. Mukherjee, A. K., Mohapatra, T., Varshney, A., Sharma, R., & Sharma, R. P. (2001). Molecular mapping of a locus controlling resistance to Albugo candida in Indian mustard. Plant Breed, 120, 483–487.Google Scholar
  89. Mozo, T., Fischer, S., Shizuya, H. & Altmann, T. (1998) Construction and characterization of the IGF Arabidopsis BAC library. Molecular and General Genetics, 258, 562–70.Google Scholar
  90. Muskett, P. R., Kahn, K., Austin, M. J., Moisan, L. J., Sadanandom, A., Shirasu, K., Jones, J. D. G., & Parker, J. E. (2002). Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defenses against multiple pathogens. The Plant Cell, 14, 979–992.PubMedCentralPubMedGoogle Scholar
  91. Osborn, T. C., Kole, C., Parkin, I. A. P., Sharpe, A. G., Kuiper, M., Lydiate, D. J., & Trick, M. (1997). Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics, 146, 1123–1129.PubMedCentralPubMedGoogle Scholar
  92. Pal, Y., Singh, H., & Singh, D. (1991). Genetic components of variation for white rust resistance in Indian x Exotic crosses of Indian mustard. Crop Research, 4, 280–283.Google Scholar
  93. Paladhi, M. M., Prasad, R. C., & Dass, B. (1993). Inheritance of field reaction to white rust in Indian mustard. Indian Journal of Genetics and Plant Breeding, 53, 327–328.Google Scholar
  94. Parker, J. E., Holub, E. B., Frost, L. N., Falk, A., Gunn, N. D., & Daniels, M. J. (1996). Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. The Plant Cell, 8, 2033–2046.PubMedCentralPubMedGoogle Scholar
  95. Parkin, I. A. P., Sharpe, A. G., Keith, D. J., & Lydiate, D. J. (1995). Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome, 38, 1122–1133.PubMedGoogle Scholar
  96. Parniske, M., Hammond-Kosack, K. E., Golstein, C., Thomas, C. M., Jones, D. A., Harrison, K., Wulff, B. B., & Jones, J. D. (1997). Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell, 91, 821–832.PubMedGoogle Scholar
  97. Peart, J. R., Cook, G., Feys, B. J., Parker, J. E., & Baulcombe, D. C. (2002). An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. The Plant Journal, 29, 569–579.PubMedGoogle Scholar
  98. Pound, G. S., & Williams, P. H. (1963). Biologal races of Albugo candida. Phytopathology, 53, 1146–1149.Google Scholar
  99. Prabhu, K. V., Somers, D. J., Rakow, G., & Gugel, R. K. (1998). Molecular markers linked to white rust resistance in mustard Brassica juncea. Theoretical and Applied Genetics, 97, 865–870.Google Scholar
  100. Rao, M. V. B., & Raut, R. N. (1994). Inheritance of resistance to white rust (Albugo candida) in an interspecific cross between Indian mustard (Brassica juncea) and rapeseed (B. napus). The Indian Journal of Agricultural Sciences, 64, 249–251.Google Scholar
  101. Rehmany, A. P., Lynn, J. R., Tor, M., Holub, E. B., & Beynon, J. L. (2000). A comparison of Peronospora parasitica (downy mildew) isolates from Arabidopsis thaliana and Brasscia oleracea using amplified fragment length polymorphism and internal transcribed spacer 1 sequence analyses. Fungal Genetics and Biology, 30, 95–103.PubMedGoogle Scholar
  102. Rentel, M. C., Leonelli, L., Dahlbeck, D., Zhao, B., & Staskawicz, B. J. (2008). Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens. Proceedings of National Academy of Sciences U.S.A, 105, 1091–1096.Google Scholar
  103. Rusterucci, C., Aviv, D. H., Holt, B. F., Dangl, J. L., & Parker, J. E. (2001). The disease resistance signalling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. The Plant Cell, 13, 2211–2224.PubMedCentralPubMedGoogle Scholar
  104. Sachan, J. N., Kolte, S. J., & Singh, B. (1995). Genetics of resistance to white rust (Albugo candida race 2) in mustard (Brassica juncea (L.) Czern & Coss). In: GCIRC ninth International Rapeseed Congress (pp. 1295–1297). UK: Cambridge.Google Scholar
  105. Saharan, G. S. (2010). Analysis of genetic diversity in Albugo-crucifer system. Journal of Mycology and Plant Pathology, 40, 1–13.Google Scholar
  106. Saharan, G. S., & Krishnia, S. K. (2001). Multiple disease resistance in rapeseed and mustard. In S. Nagarajan & D. P. Singh (Eds.), Role of resistance in intensive agriculture (pp. 98–108). New Delhi: Kalyani Pub.Google Scholar
  107. Shah, J., & Klessig, D. F. (1999). Salicylic acid: Signal perception and transduction. In M. A. Hooykaas & K. R. Libbenga (Eds.), Biochemistry and molecular biology of plant hormones (pp. 513–541). New York: Elsevier Science B.V.Google Scholar
  108. Singh, D., & Singh, H. (1987). Genetic analysis of resistance to white rust in Indian mustard. 7th International rapeseed congress, Poznan, Poland, 11–14 May, 1987. Poznan, Poland: 126.Google Scholar
  109. Sharpe, A.G., Parkin, I.A.P., Keiter, D.J., & Lydiate, D.J. (1995). Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome, 38, 1112–1121.Google Scholar
  110. Singh, H., Singh, D., & Yadava, T. P. (1988). Comparative performance of the genotypes of Indian and Ethiopian mustard under semi-arid region of India. Cruciferae NewsLetter, 13, 36–37.Google Scholar
  111. Singh, U. S., Doughty, K. J., Nashaat, N. I., Bennett, R. N., & Kolte, S. J. (1999). Induction of systemic resistance to Albugo candida in Brassica juncea by pre- or co-inoculation with an incompatible isolate. Phytopathology, 89, 1226–1232.PubMedGoogle Scholar
  112. Singh, U. S., Nashaat, N.I., Doughty, K. J., & Awasthi, R. P. (2002). Altered phenotypic response to Peronospora parasitica in Brassica juncea seedlings following prior inoculation with an avirulent or virulent isolate of Albugo candida. European Journal of Plant Pathology 108, 555–64.Google Scholar
  113. Sohn, K. H., Lei, R., Nemri, A., & Jones, J. D. (2007). The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. The Plant Cell, 19, 4077–4090.PubMedCentralPubMedGoogle Scholar
  114. Somers, D. J., Rakow, G., & Rimmer, S. R. (2002). Brassica napus DNA markers linked to white rust resistance in Brassica juncea. Theoretical and Applied Genetics, 104, 1121–1124.PubMedGoogle Scholar
  115. Song, J., Bradeen, J. M., Naess, S. K., Raasch, J. A., Wielgus, S. M., Haberlach, G. T., Liu, J., Kuang, H., Austin-Philips, S., Buell, C. R., Helgeson, J. P., & Jiang, J. (2003). Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proceedings of National Academy of Sciences U.S.A, 100, 9128–9133.Google Scholar
  116. Sridhar, K., & Raut, R. N. (1998). Differential expression of white rust resistance in Indian mustard (Brassica juncea). Indian Journal of Genetics and Plant Breeding, 58, 319–322.Google Scholar
  117. Staal, J., Kaliff, M., Bohman, S., & Dixelius, C. (2006). Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against Leptosphaeria maculans, causal agent of blackleg disease. The Plant journal: for Cell and Molecular Biology, 46, 218–230.Google Scholar
  118. Subudhi, P. K., & Raut, R. N. (1994). White rust resistance and its association with parental species type and leaf waxiness in B. juncea L. Czern & Coss x B. napus L. crosses under the action of EDTA and gamma-ray. Euphytica, 74, 1–7.Google Scholar
  119. Takken, F. L., & Joosten, M. H. (2000). Plant resistance genes: Their structure, function and evolution. European Journal of Plant Pathology, 106, 699–713.Google Scholar
  120. Tai, T. H., Dahlbeck, D., Clark, E. T., Gajiwala, P., Pasion, R., Whalen, M. C., Stall, R. E., & Staskawicz, B. J. (1999). Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proceedings of the National Academy of Sciences of the United States of America, 96, 14153–14158.Google Scholar
  121. Tan, X., Meyers, B. C., Kozik, A., West, M. A. L., Morgante, M., St. Clair, D. A., Bent, A. F., & Michelmore, R. W. (2007). Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biology, 7, 56.PubMedCentralPubMedGoogle Scholar
  122. Tanhuanppa, P. (2004). Identification and mapping of resistance gene analogs and a white rust resistance locus in B.rapa ssp. Oleifera. Theoretical and Applied Genetics, 108, 1039–1046.Google Scholar
  123. Thukral, S. K., & Singh, H. (1986a). Inheritance of white rust resistance in Brassica juncea. Euphytica, 74, 1–7.Google Scholar
  124. Thukral, S. K., & Singh, H. (1986b). Inheritance of white rust resistance in Brassica juncea. Plant Breeding, 97, 75–77.Google Scholar
  125. Thukral, S. K. & Singh, H. (1986). Inheritance of white rust resistance in Brassica juncea. Plant Breeding 97, 75-77.Google Scholar
  126. Tiwari, A. S., Petrie, G. A. and Downey, R. K. (1988). Inheritance of resistance to Albugo candida race 2 in mustard (Brassica juncea (L.) Czem.). Canadian Journal of Plant Science 68, 297-300.Google Scholar
  127. Tor, M., Gordon, P., Cuzick, A., Eulgem, T., Sinapidou, E., Mert-Turk, F., Can, C., Dangl, J. L., & Holub, E. B. (2002). Arabidopsis SGT1b is required for defense signaling conferred by several downy mildew resistance genes. The Plant Cell, 14, 993–1003.PubMedCentralPubMedGoogle Scholar
  128. Tornero, P., Merit, P., Sadanandom, A., Shirasu, K., Innes, R. W., & Dangl, J. L. (2002). RAR1 and NDR1 contribute quantitatively to the function of Arabidopsis disease resistance genes in both simple and non-linear pathways. The Plant Cell, 14, 1005–1015.PubMedCentralPubMedGoogle Scholar
  129. Tosa, Y. (1992). A model for the evolution of formae speciales and races. Phytopathology, 82, 728–729.Google Scholar
  130. Underwood, W., Melotto, M., & He, S. Y. (2007). Role of plant stomata in bacterial invasion. Cellular Microbiology, 9, 1621–1629.PubMedGoogle Scholar
  131. Varshney, A., Mohapatra, T., & Sharma, R. P. (2004). Development and validation of CAPS and AFLP markers for white rust resistance gene in Brassica juncea. Theoretical and Applied Genetics, 109, 153–159.PubMedGoogle Scholar
  132. Verma, U., & Bhowmik, T. P. (1989). Epidemiology of white rust disease of mustard (B. juncea). Indian Phytopathology, 42, 274–275 (Abstr.).Google Scholar
  133. Voglmayr, H., & Riethmüller, A. (2006). Phylogenetic relationships of Albugo species (white blister rusts) based on LSU rDNA sequence and oospore data. Mycological Research, 110, 75–85.PubMedGoogle Scholar
  134. Whisson, S. C., Boevink, P. C., Moleleki, L., Avrova, A. O., Morales, J. G., Gilroy, E. M., Armstrong, M. R., Grouffaud, S., van West, P., Chapman, S., Hein, I., Toth, I. K., Pritchard, L., & Birch, P. R. (2007). A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature, 450, 115–118.PubMedGoogle Scholar
  135. Wiermer, M., Feys, B. J., & Parker, J. E. (2005). Plant immunity: The EDS1 regulatory node. Current Opinion in Plant Biology, 8, 383–389.PubMedGoogle Scholar
  136. Williams, P. H., & Hill, C. B. (1986). Rapid cycling populations of Brassica. Science, 232, 1385–1389.PubMedGoogle Scholar
  137. Williams, P. H., & Pound, G. S. (1963). Nature and inheritance of resistance to Albugo candida in radish. Phytopathology, 53, 1150–1154.Google Scholar
  138. Win, J., Morgan, W., Bos, J., Krasileva, K. V., Cano, L. M., Chaparro-Garcia, A., Ammar, R., Staskawicz, B. J., & Kamoun, S. (2007). Adaptive evolution has targeted the C-terminal domain of the RxLR effectors of plant pathogenic oomycetes. The Plant Cell, 19, 2349–2369.PubMedCentralPubMedGoogle Scholar
  139. Wulff, B. B., Thomas, C. M., Smoker, M., Grant, M., & Jones, J. D. (2001). Domain swapping and gene shuffling identify sequences required for induction of an Avr-dependent hypersensitive response by the tomato Cf- 4 and Cf-9 proteins. The Plant Cell, 13, 255–272.PubMedCentralPubMedGoogle Scholar
  140. Young, N. D. (2000). The genetic architecture of resistance. Current Opinion in Plant Biology, 3, 285–290.PubMedGoogle Scholar
  141. Zhou, N., Tootle, T. L., Tsui, F., Klessig, D. F., & Glazebrook, J. (1998). PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. The Plant Cell, 10, 1021–1030.PubMedCentralPubMedGoogle Scholar
  142. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D., Felix, G., & Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 428, 764–767.PubMedGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Govind Singh Saharan
    • 1
  • Prithwi Raj Verma
    • 2
  • Prabhu Dayal Meena
    • 3
  • Arvind Kumar
    • 4
  1. 1.Department of Plant PathologyCCS Haryana Agricultural UniversityHisarIndia
  2. 2.Agriculture and Agi-Food Canada Saskatoon Research StationSaskatoonCanada
  3. 3.Crop Protection UnitDirectorate of Rapeseed – Mustard Research (ICAR)BharatpurIndia
  4. 4.Krishi Anusandhan Bhawan – IIIndian Council of Agricultural ResearchNew DelhiIndia

Personalised recommendations