Skip to main content

Infection

  • Chapter
  • First Online:
  • 454 Accesses

Abstract

In all species of Albugo, oospores are the primary source of inoculum. In perennial hosts like horseradish, the mycelium persists in the crowns, and occasionally in the lateral roots. Secondary infection and spread of disease during the growing seasons is by means of sporangia, which are readily carried short distances by splashed water droplets or, to a certain degree, by air currents. Moisture on the host surface is essential both for sporangial germination and infection by zoospores. The most likely primary infection sites from germinating overwintered oospores in soil are the emerging cotyledons. The zoospores derived from germinating oospores are also capable of causing infection, but on evidence exists of infection arising directly by germ tubes produced from germinating oospores. The process of infection and pathogenesis in susceptible, moderately resistant and resistant Brassica genotypes have been determined. Molecular mechanism of host pathogen interaction is also known.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alvarez, M. E., Pennel, R. I., Meijer, P. J., Ishikawa, A., Dixon, R. A., & Lamb, C. (1998). Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell, 92, 773–784.

    Article  CAS  PubMed  Google Scholar 

  • Bansal, V. K., Tewari, J. P., Stringam, G. R., & Thiagarajah, M. R. (2005). Histological and inheritance studies of partial resistance in the B. napus–A. candida host–pathogen interaction. Plant Breeding, 124, 27–32.

    Article  Google Scholar 

  • Bartling, D., Radzio, R., Steiner, U., & Weiler, E. W. (1993). A glutathione S-transferase with glutathione peroxidase activity from Arabidopsis thaliana: Molecular cloning and functional characterization. European Journal of Biochemistry, 216, 579–586.

    Article  CAS  PubMed  Google Scholar 

  • Belhaj, K., Lin, B. Q., & Mauch, F. (2009). The chloroplast protein RPH1 plays a role in the immune response of Arabidopsis to Phytophthora brassicae. The Plant Journal, 58, 287–298.

    Article  CAS  PubMed  Google Scholar 

  • Berhane, K., Widersten, M., Engstrom, A., Kozarich, J., & Mannervik, B. (1994). Detoxication of base propenals and other alpha, beta-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione S-transferases. Proceedings of the National Academy of Sciences of the United States of America, 91, 1480–1484.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Butler, E. J. (1918). White rust (C. candidus) (Pers. Lev.). In E. J. Butler (Ed.), Fungi and disease in plants. Thacker Spink, Calcutta, pp. 291–297.

    Google Scholar 

  • Butler, E. J., & Jones, S. G. (1961). Plant pathology. London: McMillan.

    Google Scholar 

  • Chupp, C. (1925). Manual of vegetable garden diseases. New York: MacMillan.

    Google Scholar 

  • Coaker, G., Falick, A., & Staskawicz, B. (2005). Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science, 308, 548–550.

    Article  CAS  PubMed  Google Scholar 

  • Coca, M. A., Damsz, B., Yun, D. J., Hasegawa, P. M., Bressan, R. A., & Narasimhan, M. L. (2000). Heterotrimeric G-proteins of a filamentous fungus regulate cell wall composition and susceptibility to a plant PR-5 protein. The Plant Journal, 22, 61–69.

    Article  CAS  PubMed  Google Scholar 

  • Coffey, M. D. (1975). Ultrastructural features of the haustorial apparatus of the white blister fungus A. candida. Canadian Journal of Botany, 53, 1285–1299.

    Article  Google Scholar 

  • De Gara, L., de Pinto, M. C., & Tommasi, F. (2003). The antioxidant systems vis-a-vis reactive oxygen species during plant–pathogen interaction. Plant Physiology and Biochemistry, 41, 863–870.

    Article  CAS  Google Scholar 

  • Dietz, K. J., Jacob, S., Oelze, M. L., Laxa, M., Tognetti, V., de Miranda, S. M. N., Baier, M., & Finkemeier, I. (2006). The function of peroxiredoxins in plant organelle redox metabolism. Journal of Experimental Botany, 57, 1697–1709.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, D. P., Skipsey, M., & Edwards, R. (2010). Roles for glutathione transferases in plant secondary metabolism. Phytochemistry, 71, 338–350.

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Solis, J. R., Zengyong, H., Amparo, L., Julie, T., Buchanan, B. B., & Sheng, L. (2008). A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 105, 16386–16391.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dudler, R., Hertig, C., Rebman, G., Bull, J., & Mauch, F. (1991). A pathogen-induced wheat gene encodes a protein homologous to glutathione S-transferases. Molecular Plant-Microbe Interactions, 4, 4–18.

    Article  Google Scholar 

  • El-Zahaby, H. M., Gullner, G., & Király, Z. (1995). Effects of powdery mildew infection of barley on the ascorbate–glutathione cycle and other antioxidants in different host–pathogen interactions. Phytopathology, 85, 1225–1230.

    Article  CAS  Google Scholar 

  • Fernandez, A. P., & Strand, A. (2008). Retrograde signaling and plant stress: Plastid signals initiate cellular stress responses. Current Opinion in Plant Biology, 11, 509–513.

    Article  CAS  PubMed  Google Scholar 

  • Fodor, J., Gullner, G., Adam, A. L., Barna, B., Komives, T., & Kiraly, Z. (1997). Local and systemic responses of antioxidant to tobacco mosaic virus infection and to salicylic acid in tobacco. Plant Physiology, 114, 1443–1451.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2000). Oxygen processing in photosynthesis: Regulation and signalling. New Phytologist, 146, 359–388.

    Article  CAS  Google Scholar 

  • Fridovich, I. (1986). Superoxide dismutases. Advances in Enzymology and Related Areas of Molecular Biology, 58, 61–97.

    CAS  PubMed  Google Scholar 

  • Glazebrook, J. (2005). Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    Article  CAS  PubMed  Google Scholar 

  • Grenier, J., Potvin, C., & Asselin, A. (1993). Barley pathogenesis-related proteins with fungal cell wall lytic activity inhibit the growth of yeasts. Plant Physiology, 103, 1277–1283.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. C. (1989). Free radicals in biology and medicine (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Heald, F. D. (1926). Diseases due to downy mildew and allies. In F. D. Heald (Ed.), Manual of plant diseases (Vol. 16, pp. 390–436). New York: McGraw Hill.

    Google Scholar 

  • Heeg, C., Kruse, C., Jost, R., Gutensohn, M., Ruppert, T., Wirtz, M., & Hell, R. (2008). Analysis of the Arabidopsis O-acetylserine (thiol) lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. The Plant Cell, 20, 168–185.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ibeas, J. I., Lee, H., Damsz, B., Prasad, D. T., Pardo, J. M., Hasegawa, P. M., Bressan, R. A., & Narasimhan, M. L. (2000). Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. The Plant Journal, 23, 375–383.

    Article  CAS  PubMed  Google Scholar 

  • Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Jost, R., Altschmied, L., Bloem, E., Bogs, J., Gershenzon, J., Hähnel, U., Hänsch, R., Hartmann, T., Kopriva, S., & Kruse, C. (2005). Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. Photosynthesis Research, 86, 491–508.

    Article  CAS  PubMed  Google Scholar 

  • Kadow, K. J., & Anderson, H. W. (1940). A study of horseradish diseases and their control. University of Illinois Agricultural Experiment Station Bulletin, 469, 531–543.

    Google Scholar 

  • Kaur, P., Jost, R., Sivasithamparam, K., & Barbetti, M. J. (2011). Proteome analysis of the A. candida–B. juncea pathosystem reveals that the timing of the expression of defence-related genes is a crucial determinant of pathogenesis. Journal of Experimental Botany, 62, 1285–1298.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kromina, K. A., Ignatov, A. N., Abdeeva, I. A., & Adhikari, T. B. (2008). Role of peptidyl-prolyl cis/trans isomerases in pathological processes. Memory Cell Biology, 2, 195–202.

    Google Scholar 

  • Kruse, C., Jost, R., Lipschis, M., Kopp, B., Hartmann, M., & Hell, R. (2007). Sulfur-enhanced defence: Effects of sulfur metabolism, nitrogen supply, and pathogen lifestyle. Plant Biology, 9, 608–619.

    Article  CAS  PubMed  Google Scholar 

  • Lakra, B. S., & Saharan, G. S. (1988a). Influence of host resistance on colonization and incubation period of A. candida in mustard. Cruciferae Newsletter, 13, 108–109.

    Google Scholar 

  • Lakra, B. S., & Saharan, G. S. (1988b). Morphological and pathological variations in Albugo candida associated with Brassica species. Indian Journal of Mycology and Plant Pathology, 18, 149–156.

    Google Scholar 

  • Laloi, C., Stachowiak, M., Pers-Kamczyc, E., Warzych, E., Murgia, I., & Apel, K. (2007). Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 104, 672–677.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lamb, C., & Dixon, R. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 251–275.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. Q., & Rimmer, S. R. (1990). Effect of host genotype, inoculum concentration, and incubation temperature on white rust development in oilseed rape. Canadian Journal of Plant Pathology, 12, 389–392.

    Article  Google Scholar 

  • Liu, J. Q., Rimmer, S. R., & Scarth, R. (1989). Histopathology of compatibility and incompatibility between oilseed rape and Albugo candida. Plant Pathology, 38, 176–182.

    Article  Google Scholar 

  • Maheshwari, D. K., Chaturvedi, S. N., & Yadav, B. S. (1985a). Histochemical studies on hypertrophied inflorescence axis of Brassica juncea due to Albugo candida. Indian Phytopathology, 38, 263–266.

    Google Scholar 

  • Maheshwari, D. K., Chaturvedi, S. N., & Yadav, B. S. (1985b). Structure and development of galls induced by Albugo in inflorescence axis of Brassica juncea. Indian Phytopathology, 38, 546–548.

    Google Scholar 

  • Marrs, K. A. (1996). The functions and regulation of glutathione S-transferases in plants. Annual Review of Plant Biology, 47, 127–158.

    Article  CAS  Google Scholar 

  • Mach, J. M., Castillo, A. R., Hoogstraten, R., & Greenberg, J. T. (2001). The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proceedings of the National Academy of Sciences of the United States of America, 98, 771–776.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller, G., Suzuki, N., Rizhsky, L., Hegie, A., Koussevitzky, S., & Mittler, R. (2007). Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiology, 144, 1777–1785.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490–498.

    Article  CAS  PubMed  Google Scholar 

  • Motohashi, K., Koyama, F., Nakanishi, Y., Ueoka-Nakanishi, H., & Hisabori, T. (2003). Chloroplast cyclophilin is a target protein of thioredoxin. The Journal of Biological Chemistry, 278, 31848–31852.

    Article  CAS  PubMed  Google Scholar 

  • Napper, M. E. (1933). Observations on spore germination and specialization of parasitism in Cystopus candidus. Journal of Pomology and Horticultural Science, 11, 81–100.

    Google Scholar 

  • Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 249–279.

    Article  CAS  PubMed  Google Scholar 

  • Noji, M., Saito, M., Nakamura, M., Aono, M., Saji, H., & Saito, K. (2001). Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environment pollutants. Plant Physiology, 126, 973–980.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pickett, C. B., & Lu, A. Y. H. (1989). Glutathione S-transferases: Gene structure, regulation, and biological function. Annual Review of Biochemistry, 58, 743–764.

    Article  CAS  PubMed  Google Scholar 

  • Pidskalny, R. S., & Rimmer, S. R. (1985). Virulence of Albugo candida from turnip rape (Brassica campestris) and mustard (Brassica juncea) on various crucifers. Canadian Journal of Plant Pathology, 7, 283–286.

    Article  Google Scholar 

  • Pruzinska, A., Anders, I., Aubry, S., Schenk, N., Tapernoux-Luthi, E., Muller, T., Krautler, B., & Hortensteiner, S. (2007). In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. The Plant Cell, 19, 369–387.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raabe, R. D., & Pound, G. S. (1952). Morphology and pathogenicity of A. occidentalis, the incitant of white rust of spinach. Phytopathology, 42, 473. (Abstr.).

    Google Scholar 

  • Richardson, M., Valdes-Rodriquez, S., & Blanco-Labra, A. (1987). A possible function for thaumatin and a TMV-induced protein suggested by homology to a maize inhibitor. Nature, 327, 432–434.

    Article  Google Scholar 

  • Roberts, W., & Selitrennikoff, C. P. (1990). Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. Journal of General Microbiology, 136, 1771–1778.

    Article  CAS  Google Scholar 

  • Rodoni, S., Vicentini, F., Schellenberg, M., Matile, P., & Hortensteiner, S. (1997). Partial purification and characterization of red chlorophyll catabolite reductase, a stroma protein involved in chIorophyll breakdown. Plant Physiology, 115, 677–682.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sappl, P. G., Carroll, A. J., Clifton, R., Lister, R., Whelan, J., Millar, A. H., & Singh, K. B. (2009). The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. The Plant Journal, 58, 53–68.

    Article  CAS  PubMed  Google Scholar 

  • Selitrennikoff, C. P. (2001). Antifungal proteins. Applied and Environmental Microbiology, 67, 2883–2894.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soylu, S. (2004). Ultrastructural characterisation of the host–pathogen interface in white blister-infected Arabidopsis leaves. Mycopathology, 158, 457–464.

    Article  Google Scholar 

  • Soylu, S., Keshavarzi, M., Brown, I., & Mansfield, J. W. (2003). Ultrastructural characterisation of interactions between Arabidopsis thaliana and Albugo candida. Physiology and Molecular Plant Pathology, 63, 201–211.

    Article  CAS  Google Scholar 

  • Strohm, M., Jouanin, L., Kunert, K. J., Pruvost, C., Polle, A., Foyer, C. H., & Rennenberg, H. (1995). Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula x P. alba) overexpressing glutathione synthetase. The Plant Journal, 7, 141–145.

    Article  CAS  Google Scholar 

  • Trudel, J., Grenier, J., Potvin, C., & Asselin, A. (1998). Several thaumatin like proteins bind to b-1, 3-glucans. Plant Physiology, 118, 1431–1438.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Breusegem, F., & Dat, J. F. (2006). Reactive oxygen species in plant cell death. Plant Physiology, 141, 384–390.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vanacker, H., Carver, T. L. W., & Foyer, C. H. (1998). Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiology, 117, 1103–1114.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vanacker, H., Foyer, C. H., & Carver, T. L. W. (1999). Changes in apoplastic antioxidants induced by powdery mildew attack in oat genotypes with race non-specific resistance. Planta, 208, 444–452.

    Article  CAS  Google Scholar 

  • Verma, P. R. (2012). White rust of crucifers: An overview of research progress. Journal of Oilseed Brassica, 3, 78–87.

    Google Scholar 

  • Verma, P. R., & Petrie, G. A. (1975). Germination of oospores of A. candida. Canadian Journal of Botany, 53, 836–842.

    Article  Google Scholar 

  • Verma, P. R., Harding, H., Petrie, G. A., & Williams, P. H. (1975). Infection and temporal development of mycelium of Albugo candida in cotyledons of four Brassica spp. Canadian Journal of Botany, 53, 1016–1020.

    Article  Google Scholar 

  • Verma, P. R., & Petrie, G. A. (1980). Effect of seed infestation and flower bud inoculation on systemic infection of turnip rape by A. candida. Canadian Journal of Plant Science 60, 267-271.

    Google Scholar 

  • Wachter, A., Wolf, S., Steininger, H., Bogs, J., & Rausch, T. (2005). Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: Implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. The Plant Journal, 41, 15–30.

    Article  CAS  PubMed  Google Scholar 

  • Walker, J. C. (1957). Plant pathology (pp. 214–219). New York: McGraw-Hill.

    Google Scholar 

  • Wang, X., Zafian, P., Choudhary, M., & Lawton, M. (1996). The PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defence proteins. Proceedings of the National Academy of Sciences of the United States of America, 93, 2598–2602.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whipps, J. M., & Cooke, R. C. (1978). Occurrence of flagellar beads on zoospores of Albugo tragopogonis. Transactions of British Mycological Society, 71, 141–142.

    Article  Google Scholar 

  • Williamson, G., & Beverley, M. C. (1987). The purification of acidic glutathione S-transferases from pea seeds and their activity with lipid peroxidation products. Biochemical Society Transactions, 15, 1103–1104.

    CAS  Google Scholar 

  • Wirtz, M., & Hell, R. (2007). Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco. The Plant Cell, 19, 625–639.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wuthrich, K. L., Bovet, L., Hunziker, P. E., Donnison, I. S., & Hortensteiner, S. (2000). Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. The Plant Journal, 21, 189–198.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govind Singh Saharan .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Saharan, G., Verma, P., Meena, P., Kumar, A. (2014). Infection. In: White Rust of Crucifers: Biology, Ecology and Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1792-3_6

Download citation

Publish with us

Policies and ethics