• Govind Singh Saharan
  • Prithwi Raj Verma
  • Prabhu Dayal Meena
  • Arvind Kumar


In all species of Albugo, oospores are the primary source of inoculum. In perennial hosts like horseradish, the mycelium persists in the crowns, and occasionally in the lateral roots. Secondary infection and spread of disease during the growing seasons is by means of sporangia, which are readily carried short distances by splashed water droplets or, to a certain degree, by air currents. Moisture on the host surface is essential both for sporangial germination and infection by zoospores. The most likely primary infection sites from germinating overwintered oospores in soil are the emerging cotyledons. The zoospores derived from germinating oospores are also capable of causing infection, but on evidence exists of infection arising directly by germ tubes produced from germinating oospores. The process of infection and pathogenesis in susceptible, moderately resistant and resistant Brassica genotypes have been determined. Molecular mechanism of host pathogen interaction is also known.


Germ Tube Partial Resistant Incompatible Interaction Brassica Crop Intercellular Hypha 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alvarez, M. E., Pennel, R. I., Meijer, P. J., Ishikawa, A., Dixon, R. A., & Lamb, C. (1998). Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell, 92, 773–784.PubMedCrossRefGoogle Scholar
  2. Bansal, V. K., Tewari, J. P., Stringam, G. R., & Thiagarajah, M. R. (2005). Histological and inheritance studies of partial resistance in the B. napus–A. candida host–pathogen interaction. Plant Breeding, 124, 27–32.CrossRefGoogle Scholar
  3. Bartling, D., Radzio, R., Steiner, U., & Weiler, E. W. (1993). A glutathione S-transferase with glutathione peroxidase activity from Arabidopsis thaliana: Molecular cloning and functional characterization. European Journal of Biochemistry, 216, 579–586.PubMedCrossRefGoogle Scholar
  4. Belhaj, K., Lin, B. Q., & Mauch, F. (2009). The chloroplast protein RPH1 plays a role in the immune response of Arabidopsis to Phytophthora brassicae. The Plant Journal, 58, 287–298.PubMedCrossRefGoogle Scholar
  5. Berhane, K., Widersten, M., Engstrom, A., Kozarich, J., & Mannervik, B. (1994). Detoxication of base propenals and other alpha, beta-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione S-transferases. Proceedings of the National Academy of Sciences of the United States of America, 91, 1480–1484.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Butler, E. J. (1918). White rust (C. candidus) (Pers. Lev.). In E. J. Butler (Ed.), Fungi and disease in plants. Thacker Spink, Calcutta, pp. 291–297.Google Scholar
  7. Butler, E. J., & Jones, S. G. (1961). Plant pathology. London: McMillan.Google Scholar
  8. Chupp, C. (1925). Manual of vegetable garden diseases. New York: MacMillan.Google Scholar
  9. Coaker, G., Falick, A., & Staskawicz, B. (2005). Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science, 308, 548–550.PubMedCrossRefGoogle Scholar
  10. Coca, M. A., Damsz, B., Yun, D. J., Hasegawa, P. M., Bressan, R. A., & Narasimhan, M. L. (2000). Heterotrimeric G-proteins of a filamentous fungus regulate cell wall composition and susceptibility to a plant PR-5 protein. The Plant Journal, 22, 61–69.PubMedCrossRefGoogle Scholar
  11. Coffey, M. D. (1975). Ultrastructural features of the haustorial apparatus of the white blister fungus A. candida. Canadian Journal of Botany, 53, 1285–1299.CrossRefGoogle Scholar
  12. De Gara, L., de Pinto, M. C., & Tommasi, F. (2003). The antioxidant systems vis-a-vis reactive oxygen species during plant–pathogen interaction. Plant Physiology and Biochemistry, 41, 863–870.CrossRefGoogle Scholar
  13. Dietz, K. J., Jacob, S., Oelze, M. L., Laxa, M., Tognetti, V., de Miranda, S. M. N., Baier, M., & Finkemeier, I. (2006). The function of peroxiredoxins in plant organelle redox metabolism. Journal of Experimental Botany, 57, 1697–1709.PubMedCrossRefGoogle Scholar
  14. Dixon, D. P., Skipsey, M., & Edwards, R. (2010). Roles for glutathione transferases in plant secondary metabolism. Phytochemistry, 71, 338–350.PubMedCrossRefGoogle Scholar
  15. Dominguez-Solis, J. R., Zengyong, H., Amparo, L., Julie, T., Buchanan, B. B., & Sheng, L. (2008). A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 105, 16386–16391.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Dudler, R., Hertig, C., Rebman, G., Bull, J., & Mauch, F. (1991). A pathogen-induced wheat gene encodes a protein homologous to glutathione S-transferases. Molecular Plant-Microbe Interactions, 4, 4–18.CrossRefGoogle Scholar
  17. El-Zahaby, H. M., Gullner, G., & Király, Z. (1995). Effects of powdery mildew infection of barley on the ascorbate–glutathione cycle and other antioxidants in different host–pathogen interactions. Phytopathology, 85, 1225–1230.CrossRefGoogle Scholar
  18. Fernandez, A. P., & Strand, A. (2008). Retrograde signaling and plant stress: Plastid signals initiate cellular stress responses. Current Opinion in Plant Biology, 11, 509–513.PubMedCrossRefGoogle Scholar
  19. Fodor, J., Gullner, G., Adam, A. L., Barna, B., Komives, T., & Kiraly, Z. (1997). Local and systemic responses of antioxidant to tobacco mosaic virus infection and to salicylic acid in tobacco. Plant Physiology, 114, 1443–1451.PubMedCentralPubMedGoogle Scholar
  20. Foyer, C. H., & Noctor, G. (2000). Oxygen processing in photosynthesis: Regulation and signalling. New Phytologist, 146, 359–388.CrossRefGoogle Scholar
  21. Fridovich, I. (1986). Superoxide dismutases. Advances in Enzymology and Related Areas of Molecular Biology, 58, 61–97.PubMedGoogle Scholar
  22. Glazebrook, J. (2005). Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.PubMedCrossRefGoogle Scholar
  23. Grenier, J., Potvin, C., & Asselin, A. (1993). Barley pathogenesis-related proteins with fungal cell wall lytic activity inhibit the growth of yeasts. Plant Physiology, 103, 1277–1283.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Halliwell, B., & Gutteridge, J. M. C. (1989). Free radicals in biology and medicine (2nd ed.). Oxford: Oxford University Press.Google Scholar
  25. Heald, F. D. (1926). Diseases due to downy mildew and allies. In F. D. Heald (Ed.), Manual of plant diseases (Vol. 16, pp. 390–436). New York: McGraw Hill.Google Scholar
  26. Heeg, C., Kruse, C., Jost, R., Gutensohn, M., Ruppert, T., Wirtz, M., & Hell, R. (2008). Analysis of the Arabidopsis O-acetylserine (thiol) lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. The Plant Cell, 20, 168–185.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Ibeas, J. I., Lee, H., Damsz, B., Prasad, D. T., Pardo, J. M., Hasegawa, P. M., Bressan, R. A., & Narasimhan, M. L. (2000). Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. The Plant Journal, 23, 375–383.PubMedCrossRefGoogle Scholar
  28. Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.PubMedCrossRefGoogle Scholar
  29. Jost, R., Altschmied, L., Bloem, E., Bogs, J., Gershenzon, J., Hähnel, U., Hänsch, R., Hartmann, T., Kopriva, S., & Kruse, C. (2005). Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. Photosynthesis Research, 86, 491–508.PubMedCrossRefGoogle Scholar
  30. Kadow, K. J., & Anderson, H. W. (1940). A study of horseradish diseases and their control. University of Illinois Agricultural Experiment Station Bulletin, 469, 531–543.Google Scholar
  31. Kaur, P., Jost, R., Sivasithamparam, K., & Barbetti, M. J. (2011). Proteome analysis of the A. candida–B. juncea pathosystem reveals that the timing of the expression of defence-related genes is a crucial determinant of pathogenesis. Journal of Experimental Botany, 62, 1285–1298.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Kromina, K. A., Ignatov, A. N., Abdeeva, I. A., & Adhikari, T. B. (2008). Role of peptidyl-prolyl cis/trans isomerases in pathological processes. Memory Cell Biology, 2, 195–202.Google Scholar
  33. Kruse, C., Jost, R., Lipschis, M., Kopp, B., Hartmann, M., & Hell, R. (2007). Sulfur-enhanced defence: Effects of sulfur metabolism, nitrogen supply, and pathogen lifestyle. Plant Biology, 9, 608–619.PubMedCrossRefGoogle Scholar
  34. Lakra, B. S., & Saharan, G. S. (1988a). Influence of host resistance on colonization and incubation period of A. candida in mustard. Cruciferae Newsletter, 13, 108–109.Google Scholar
  35. Lakra, B. S., & Saharan, G. S. (1988b). Morphological and pathological variations in Albugo candida associated with Brassica species. Indian Journal of Mycology and Plant Pathology, 18, 149–156.Google Scholar
  36. Laloi, C., Stachowiak, M., Pers-Kamczyc, E., Warzych, E., Murgia, I., & Apel, K. (2007). Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling of stress responses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 104, 672–677.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Lamb, C., & Dixon, R. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 251–275.PubMedCrossRefGoogle Scholar
  38. Liu, J. Q., & Rimmer, S. R. (1990). Effect of host genotype, inoculum concentration, and incubation temperature on white rust development in oilseed rape. Canadian Journal of Plant Pathology, 12, 389–392.CrossRefGoogle Scholar
  39. Liu, J. Q., Rimmer, S. R., & Scarth, R. (1989). Histopathology of compatibility and incompatibility between oilseed rape and Albugo candida. Plant Pathology, 38, 176–182.CrossRefGoogle Scholar
  40. Maheshwari, D. K., Chaturvedi, S. N., & Yadav, B. S. (1985a). Histochemical studies on hypertrophied inflorescence axis of Brassica juncea due to Albugo candida. Indian Phytopathology, 38, 263–266.Google Scholar
  41. Maheshwari, D. K., Chaturvedi, S. N., & Yadav, B. S. (1985b). Structure and development of galls induced by Albugo in inflorescence axis of Brassica juncea. Indian Phytopathology, 38, 546–548.Google Scholar
  42. Marrs, K. A. (1996). The functions and regulation of glutathione S-transferases in plants. Annual Review of Plant Biology, 47, 127–158.CrossRefGoogle Scholar
  43. Mach, J. M., Castillo, A. R., Hoogstraten, R., & Greenberg, J. T. (2001). The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proceedings of the National Academy of Sciences of the United States of America, 98, 771–776.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Miller, G., Suzuki, N., Rizhsky, L., Hegie, A., Koussevitzky, S., & Mittler, R. (2007). Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiology, 144, 1777–1785.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490–498.PubMedCrossRefGoogle Scholar
  46. Motohashi, K., Koyama, F., Nakanishi, Y., Ueoka-Nakanishi, H., & Hisabori, T. (2003). Chloroplast cyclophilin is a target protein of thioredoxin. The Journal of Biological Chemistry, 278, 31848–31852.PubMedCrossRefGoogle Scholar
  47. Napper, M. E. (1933). Observations on spore germination and specialization of parasitism in Cystopus candidus. Journal of Pomology and Horticultural Science, 11, 81–100.Google Scholar
  48. Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 249–279.PubMedCrossRefGoogle Scholar
  49. Noji, M., Saito, M., Nakamura, M., Aono, M., Saji, H., & Saito, K. (2001). Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environment pollutants. Plant Physiology, 126, 973–980.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Pickett, C. B., & Lu, A. Y. H. (1989). Glutathione S-transferases: Gene structure, regulation, and biological function. Annual Review of Biochemistry, 58, 743–764.PubMedCrossRefGoogle Scholar
  51. Pidskalny, R. S., & Rimmer, S. R. (1985). Virulence of Albugo candida from turnip rape (Brassica campestris) and mustard (Brassica juncea) on various crucifers. Canadian Journal of Plant Pathology, 7, 283–286.CrossRefGoogle Scholar
  52. Pruzinska, A., Anders, I., Aubry, S., Schenk, N., Tapernoux-Luthi, E., Muller, T., Krautler, B., & Hortensteiner, S. (2007). In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. The Plant Cell, 19, 369–387.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Raabe, R. D., & Pound, G. S. (1952). Morphology and pathogenicity of A. occidentalis, the incitant of white rust of spinach. Phytopathology, 42, 473. (Abstr.).Google Scholar
  54. Richardson, M., Valdes-Rodriquez, S., & Blanco-Labra, A. (1987). A possible function for thaumatin and a TMV-induced protein suggested by homology to a maize inhibitor. Nature, 327, 432–434.CrossRefGoogle Scholar
  55. Roberts, W., & Selitrennikoff, C. P. (1990). Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. Journal of General Microbiology, 136, 1771–1778.CrossRefGoogle Scholar
  56. Rodoni, S., Vicentini, F., Schellenberg, M., Matile, P., & Hortensteiner, S. (1997). Partial purification and characterization of red chlorophyll catabolite reductase, a stroma protein involved in chIorophyll breakdown. Plant Physiology, 115, 677–682.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Sappl, P. G., Carroll, A. J., Clifton, R., Lister, R., Whelan, J., Millar, A. H., & Singh, K. B. (2009). The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. The Plant Journal, 58, 53–68.PubMedCrossRefGoogle Scholar
  58. Selitrennikoff, C. P. (2001). Antifungal proteins. Applied and Environmental Microbiology, 67, 2883–2894.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Soylu, S. (2004). Ultrastructural characterisation of the host–pathogen interface in white blister-infected Arabidopsis leaves. Mycopathology, 158, 457–464.CrossRefGoogle Scholar
  60. Soylu, S., Keshavarzi, M., Brown, I., & Mansfield, J. W. (2003). Ultrastructural characterisation of interactions between Arabidopsis thaliana and Albugo candida. Physiology and Molecular Plant Pathology, 63, 201–211.CrossRefGoogle Scholar
  61. Strohm, M., Jouanin, L., Kunert, K. J., Pruvost, C., Polle, A., Foyer, C. H., & Rennenberg, H. (1995). Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula x P. alba) overexpressing glutathione synthetase. The Plant Journal, 7, 141–145.CrossRefGoogle Scholar
  62. Trudel, J., Grenier, J., Potvin, C., & Asselin, A. (1998). Several thaumatin like proteins bind to b-1, 3-glucans. Plant Physiology, 118, 1431–1438.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Van Breusegem, F., & Dat, J. F. (2006). Reactive oxygen species in plant cell death. Plant Physiology, 141, 384–390.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Vanacker, H., Carver, T. L. W., & Foyer, C. H. (1998). Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiology, 117, 1103–1114.PubMedCentralPubMedCrossRefGoogle Scholar
  65. Vanacker, H., Foyer, C. H., & Carver, T. L. W. (1999). Changes in apoplastic antioxidants induced by powdery mildew attack in oat genotypes with race non-specific resistance. Planta, 208, 444–452.CrossRefGoogle Scholar
  66. Verma, P. R. (2012). White rust of crucifers: An overview of research progress. Journal of Oilseed Brassica, 3, 78–87.Google Scholar
  67. Verma, P. R., & Petrie, G. A. (1975). Germination of oospores of A. candida. Canadian Journal of Botany, 53, 836–842.CrossRefGoogle Scholar
  68. Verma, P. R., Harding, H., Petrie, G. A., & Williams, P. H. (1975). Infection and temporal development of mycelium of Albugo candida in cotyledons of four Brassica spp. Canadian Journal of Botany, 53, 1016–1020.CrossRefGoogle Scholar
  69. Verma, P. R., & Petrie, G. A. (1980). Effect of seed infestation and flower bud inoculation on systemic infection of turnip rape by A. candida. Canadian Journal of Plant Science 60, 267-271.Google Scholar
  70. Wachter, A., Wolf, S., Steininger, H., Bogs, J., & Rausch, T. (2005). Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: Implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. The Plant Journal, 41, 15–30.PubMedCrossRefGoogle Scholar
  71. Walker, J. C. (1957). Plant pathology (pp. 214–219). New York: McGraw-Hill.Google Scholar
  72. Wang, X., Zafian, P., Choudhary, M., & Lawton, M. (1996). The PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defence proteins. Proceedings of the National Academy of Sciences of the United States of America, 93, 2598–2602.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Whipps, J. M., & Cooke, R. C. (1978). Occurrence of flagellar beads on zoospores of Albugo tragopogonis. Transactions of British Mycological Society, 71, 141–142.CrossRefGoogle Scholar
  74. Williamson, G., & Beverley, M. C. (1987). The purification of acidic glutathione S-transferases from pea seeds and their activity with lipid peroxidation products. Biochemical Society Transactions, 15, 1103–1104.Google Scholar
  75. Wirtz, M., & Hell, R. (2007). Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco. The Plant Cell, 19, 625–639.PubMedCentralPubMedCrossRefGoogle Scholar
  76. Wuthrich, K. L., Bovet, L., Hunziker, P. E., Donnison, I. S., & Hortensteiner, S. (2000). Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. The Plant Journal, 21, 189–198.PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Govind Singh Saharan
    • 1
  • Prithwi Raj Verma
    • 2
  • Prabhu Dayal Meena
    • 3
  • Arvind Kumar
    • 4
  1. 1.Department of Plant PathologyCCS Haryana Agricultural UniversityHisarIndia
  2. 2.Agriculture and Agi-Food Canada Saskatoon Research StationSaskatoonCanada
  3. 3.Crop Protection UnitDirectorate of Rapeseed – Mustard Research (ICAR)BharatpurIndia
  4. 4.Krishi Anusandhan Bhawan – IIIndian Council of Agricultural ResearchNew DelhiIndia

Personalised recommendations