Advertisement

Biochemistry of Host–Pathogen Interaction

  • Govind Singh Saharan
  • Prithwi Raj Verma
  • Prabhu Dayal Meena
  • Arvind Kumar
Chapter

Abstract

Biochemical studies on the growth and survival of a pathogen and of the changes it induces in its host can ultimately lead to a better understanding of epidemiology, disease development, and control. With a few exceptions, such studies on white rust (WR) lag far behind those for diseases caused by other major groups of biotrophs. Ideal prerequisites for meaningful studies of the biochemistry of host–parasite interaction are (a) a clear understanding of the genetic control of virulence and avirulence in the parasite, and of susceptibility and resistance in the host; (b) precise histological and cytological descriptions of spore germination, infection, and the establishment and development of the infection; and (c) the availability of methods for growing the parasite alone and in combination with its host under controlled conditions. Unfortunately, these criteria have not been fully satisfied for any WR disease. Reduction in sugar content was proportionate to the disease severity and maximum reduction was observed in the infected leaves. Total free amino acids increased after infection in all the infected plant parts, and this increase was proportionate to the disease severity (Singh 2005).

Keywords

Infected Leaf Invertase Activity Total Free Amino Acid White Rust Ascorbic Acid Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aldesuquy, H. S., & Baka, Z. A. M. (1992). Physiological and biochemical changes in host leaf tissues associated with the growth of two biotrophic fungi growing in Egypt. Phyton, (Horn, Austria) , 32, 129–142.Google Scholar
  2. Bednarek, P., Schneider, B., Svatos, A., Oldham, N. J., & Hahlbrock, K. (2005). Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. Plant Physiology, 138, 1508–1570.CrossRefGoogle Scholar
  3. Benaroudj, N., Lee, D. H., & Goldberg, A. L. (2001). Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. The Journal of Biological Chemistry, 276, 24261–24267.PubMedCrossRefGoogle Scholar
  4. Black, L. L., Gorden, D. T., & Williams, P. H. (1968a). Carbon dioxide exchange by radish tissue infected with Albugo candida measured with an infrared CO2 analyzer. Phytopathology, 58, 173–178.Google Scholar
  5. Black, L. L., Williams, P. H., & Pound, G. S. (1968b). Anaerobic metabolism of A. candida—infected radish cotyledons. Phytopathology, 58, 672–675.Google Scholar
  6. Bones, A. M., & Rossiter, J. T. (2006). The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry, 67, 1053–1067.PubMedCrossRefGoogle Scholar
  7. Brandl, W., Herrmann, K., & Grotjahn, L. Z. (1984). Hydroxycinnamoyl esters of malic acid in small radish (Raphanus sativus L. var. sativus). Zeitschrift fur Naturforschung, 39c, 515–520.Google Scholar
  8. Chou, H. M., Bundock, N., Rolfe, S. A., & Scholes, J. D. (2000). Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Molecular Plant Pathology, 1, 99–113.PubMedCrossRefGoogle Scholar
  9. Cooke, R. (1977). The biology of symbiotic fungi. London: John Wiley and Sons.Google Scholar
  10. Daly, J. M. (1976). In R. Heitefuss, R. & P. H. (Eds.), Physiological Plant Pathology (pp. 27–50, 450–479). Berlin: Springer.Google Scholar
  11. Debnath, M., Sharma, S. L., & Kant, U. (1998). Changes in carbohydrate contents and hydrolysing enzymes in white rust of mustard (Brassica juncea (L.) Czern. & Coss.) caused by A. candida in vivo and in vitro. Journal of Phytological Research, 11, 81–82.Google Scholar
  12. Dhawan, K., Yadava, T. P., Kaushik, C. D., & Thakral, S. K. (1981). Changes in phenolic compounds and sugars in relation to white rust of Indian mustard. Journal of Crop Improvement, 8, 142–144.Google Scholar
  13. Dhingra, R. K., Chauhan, N., & Chauhan, S. V. S. (1982). Biochemical changes in the floral parts of Brassica campestris infected with Albugo candida. Indian Phytopathology, 35, 177–179.Google Scholar
  14. Fahey, J.W., Zalcmann, A.T., & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56, 5–51.Google Scholar
  15. Godika, S., & Pathak, A. K. (2005). Control of white rust and Alternaria blight diseases of mustard by foliar sprays of Ridomil. Pestology, 29, 9–10.Google Scholar
  16. Gupta, M. L., Singh, G., Raheja, R. K., Ahuja, K. L., & Banga, S. K. (1997). Chlorophyll content in relation to white rust (A. candida) resistance in Indian mustard. Cruciferae Newsletter, 19, 105–106.Google Scholar
  17. Hagemeier, J., Schneider, B., Oldham, N. & Hahlbrock, K. (2001). Accumulation of soluble and wall-wound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proceedings of the National Academy of Sciences, USA, 98, 753–758.CrossRefGoogle Scholar
  18. Hahlbrock, K., Bednarek, P., Ciokowski, I., Hamberger, B., Heise, A., Liedgens, H., Logemann, E., Nurnberger, T., Schmelzer, E., Somssich, I. E., & Tan, J. (2003). Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interaction. Proceedings of the National Academy of Sciences, USA, 100, 14569–14576.CrossRefGoogle Scholar
  19. Harding, H., Williams, P. H., & McNabola, S. S. (1968). Chlorophyll changes, photosynthesis, and ultrastructure of chloroplasts in Albugo candida induced “green islands” on detached Brassica juncea cotyledons. Canadian Journal of Botany, 46, 1229–1234.CrossRefGoogle Scholar
  20. Heitefuss, R., & Williams, P. H. (1976). Physiological plant pathology (pp. 466, 538, 569). Berlin: Springer.CrossRefGoogle Scholar
  21. Herman, R. P., & Herman, C. A. (1985). Prostaglandins or prostaglandin like substances are implicated in normal growth and development in oomycetes. Prostaglandins, 29, 819–830.PubMedCrossRefGoogle Scholar
  22. Hirata, S. (1954). Studies on the phytohormone in the malformed portion of the diseased plants. I. The relation between the growth rate and the amount of free auxin in the fungous galls and virus-infected plants. Annals of the Phytopathological Society of Japan, 19, 33–38.CrossRefGoogle Scholar
  23. Hirata, S. (1956). Studies on the phytohormone in the malformed portion of the diseased plants. II. On the reformation and the situation of free-auxin in the tissues of fungous galls. Annals of the Phytopathological Society of Japan, 19, 185–190.CrossRefGoogle Scholar
  24. Kaur, P., Jost, R., Sivasithamparam, K., & Barbetti, M. J. (2011a). Proteome analysis of the A. candida–B. juncea pathosystem reveals that the timing of the expression of defence-related genes is a crucial determinant of pathogenesis. Journal of Experimental Botany, 62, 1285–1298.CrossRefGoogle Scholar
  25. Kiermayer, O. (1958). Paper chromatographic studies of the growth substances of Capsella bursa-pastoris after infection by Albugo candida and Peronospora parasitica. Osterreichische botanische Zeitschrift, 105, 515–528.CrossRefGoogle Scholar
  26. Kumari, K., Varghese, T. M., & Suryanarayana, D. (1970). Qualitative changes in the amino-acid contents of hypertrophied organs in mustard due to Albugo candida. Current Science, 39, 240–241.Google Scholar
  27. Lal, B. B., Prasad, M., & Ram, R. P. (1980). Amino acid constituents of inflorescence tissue of crucifers in health and disease, due to Albugo candida (Pers.) Kuntze. Zbl Bakt II Abt, 135, 240–245.Google Scholar
  28. Li, J. Y., Ou-Lee, T. M., Rabas, R., Amundson, R. G., & Last, R. L. (1993). Arabidopsis flavonoid mutants are hypersensitive to UV–B irradiation. Plant Cell, 5, 171–179.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Liang, Y. S., Choi, Y. H., Kim, H. K., Linthorst, H. J. M., & Verpoorte, R. (2006a). Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy. Phytochemistry, 67, 2503–2511.CrossRefGoogle Scholar
  30. Liang, Y. S., Kim, H. K., Lefeber, A. W. M., Erkelens, C., Choi, Y. H., Linthorst, H. J. M., & Verpoorte, R. (2006b). Identification of phenylpropanoids in methyl jasmonate treated Brassica rapa leaves using two-dimensional nuclear magnetic resonance spectroscopy. Journal of Chromatography, 1112, 148–155.CrossRefGoogle Scholar
  31. Long, D. E., & Cooke, R. C. (1974). Carbohydrate composition and metabolism of Senecio squalidus leaves infected with A. tragopogonis (Pers.) S.F. Gray. New Phytologist, 73, 889–899.CrossRefGoogle Scholar
  32. Long, D. E., Fung, A. K., McGee, E. E. M., Cooke, R. C., & Lewis, D. H. (1975). The activity of invertase and its relevance to the accumulation of storage polysaccharides in leaves infected by biotrophic fungi. New Phytologist, 74, 173–182.CrossRefGoogle Scholar
  33. Maheshwari, D. K., & Chaturvedi, S. N. (1983). Histochemical localizaiton of acid phosphatase in two fungus galls. Indian Phytopathology, 36, 167–170.Google Scholar
  34. Maheshwari, D. K., Chaturvedi, S. N., & Yadav, B. S. (1985a). Histochemical studies on hypertrophied inflorescence axis of Brassica juncea due to Albugo candida. Indian Phytopathology, 38, 263–266.Google Scholar
  35. Mendgen, K., & Hahn, M. (2002). Plant infection and the establishment of fungal biotrophy. Trends in Plant Science, 7, 352–356.PubMedCrossRefGoogle Scholar
  36. Mishra, K. K., Kolte, S. J., Nashaat, N. I. & Awasthi, R. P. (2009). Pathological and biochemical changes in Brassica juncea (mustard) infected with Albugo candida (white rust). Plant Pathology, 58, 80–86.CrossRefGoogle Scholar
  37. Misra, A., & Padhi, B. (1981). Impact of brown rust and white rust on the RNA content of their host tissues. In K. S. Bilgrami, R. S. Misra, P. C. Misra (Eds.), Advancing frontiers of mycology and plant pathology (pp. 175–182).Google Scholar
  38. O’Connell, R. J., & Panstruga, R. (2006). Teˆte a` teˆte inside a plant cell: Establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytologist, 171, 699–718.PubMedCrossRefGoogle Scholar
  39. Pedras, M. S. C., & Ahiahonu, P. W. K. (2005). Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi. Phytochemistry, 66, 391–411.PubMedCrossRefGoogle Scholar
  40. Pedras, M. S. C., Zheng, Q. A., & Sarma-Mamillapalle, V. K. (2007b). The phytoalexins from Brassicaceae: Structure, biological activity, synthesis and biosynthesis. Natural Product Communications, 2, 319–330Google Scholar
  41. Pedras, M. S. C., Zheng, Q. A., Gadagi, R. S., & Rimmer, S. R. 2008. Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress. Phytochemistry, 69, 894–910.PubMedCrossRefGoogle Scholar
  42. Pruthi, V., Chawla, H. K. L., & Saharan, G. S. (2001). Albugo candida induced changes in phenolics and glucosinolates in leaves of resistant and susceptible cultivars of Brassica juncea. Cruciferae Newsletter, 23, 61–62.Google Scholar
  43. Purohit, S. D., Ramawat, K. G., & Arya, H. C. (1980). Metabolic characteristic at enzymatic levels of Achyranthes aspera leaves infected with white rust. Indian Journal of Experimental Biology, 18, 98–99.Google Scholar
  44. Rolland, F., Baena-Gonzalez, E., & Sheen, J. (2006). Sugar sensing and signalling in plants: conserved and novel mechanisms. Annual Review of Plant Biology, 57, 675–709.PubMedCrossRefGoogle Scholar
  45. Rouxel, T., Kollmann, A., Boulidard, L., & Mithen, R. (1991). Abiotic elicitation of indole phytoalexins and resistance to Leptosphaeria maculans within Brassiceae. Planta, 184, 271–278.PubMedCrossRefGoogle Scholar
  46. Scott, K. J. (1972). Obligate parasitism by phytopathogenic fungi. Biological Reviews, 47, 537–572.CrossRefGoogle Scholar
  47. Singh, H. V. (2000). Biochemical basis of resistance in Brassica species against downy mildew and white rust of mustard. Plant Disease Research, 15, 75–77.Google Scholar
  48. Singh, H. V. (2005). Biochemical changes in Brassica juncea cv. Varuna due to Albugo candida infection. Plant Disease Research (Ludhiana), 20, 167–168.Google Scholar
  49. Singh, S. B., Singh, D. V., & Bais, B. S. (1980) In vivo cellulase and pectinase production by A. candida and P. parasitica. Indian Phytopathology, 33, 370–371.Google Scholar
  50. Singh, Y., Rao, D. V., & Batra, A. (2011a). Biochemical changes in Brassica juncea (L.) Czern. & Coss. infected with Albugo candida Kuntz. (Pers.). International Journal of Pharmaceutical Sciences Review, 7, 74–78.Google Scholar
  51. Singh, Y., Rao, D. V., & Batra, A. (2011b). Enzyme activity changes in Brassica juncea (L.) Czern. & Coss. In response to Albugo candida Kuntze (Pers.). Journal of Chemical and Pharmaceutical Research, 3, 18–24.Google Scholar
  52. Spring, O., Haas, K., Lamla, I., Thurnhofer, S., & Vetter, W. (2005). The composition and taxonomic significance of fatty acid patterns in three white rust species: Albugo amaranthi, A. candida and A. tragopogonis (Peronosporales, Albuginaceae). Mycological Progress, 4, 179–184.CrossRefGoogle Scholar
  53. Srivastava, B. I. S., Shaw, M., & Vanterpool, T. C. (1962). Effect of Albugo candida (Pers. Ex Chev.) Kuntze. On growth substances in Brassica napus (L.). Canadian Journal of Botany, 40, 53–59.CrossRefGoogle Scholar
  54. Tan, J. W., Bednarek, P., Liu, J. K., Schneider, B., Svatos, A., & Hahlbrock, K. (2004). Universally occurring phenylpropanoid and species–species indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry, 65, 691–699.PubMedCrossRefGoogle Scholar
  55. Thomton, J. H., & Cooke, R. C. 1970. Accumulation of dark-fixed carbon compounds in pustules of Albugo tragopogonis. Transactions of the British Mycological Society, 54, 483–485.CrossRefGoogle Scholar
  56. Veronese, P., Chen, X., Bluhm, B., Salmeron, J., Dietrich, R., & Mengiste, T. (2004). The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection. The Plant Journal, 40, 558–574.PubMedCrossRefGoogle Scholar
  57. Voit, O. E. (2003). Biochemical and genomic regulation of the trehalose cycle in yeast: Review of observations and canonical model analysis. Journal of Theoretical Biology, 223, 55–78.PubMedCrossRefGoogle Scholar
  58. Whetten, R. W., & Sederoff, R. (1995). Lignin biosynthesis. Plant Cell, 7, 1001–1013.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Whipps, J. M., & Cooke, R. C. (1978a). Comparative physiology of Albugo tragopogonis—infected and Puccinia lagenophorae infected plants of Senecio squalidus L. New Phytologist, 81, 307–319.CrossRefGoogle Scholar
  60. Widarto, H. T., Van der Meijden, E., Lefeber, A. W. M., Erkelens, C., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2006). Metabolomic differentiation of Brassica rapa leaves attacked by herbivore using two dimensional nuclear magnetic resonance spectroscopy. Journal of Chemical Ecology, 32, 1428–2417.CrossRefGoogle Scholar
  61. Williams, P. H., & Pound, G. S. (1964). Metabolic studies on the host-parasite complex of A. candida on radish. Phytopathology, 54, 446–451.Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Govind Singh Saharan
    • 1
  • Prithwi Raj Verma
    • 2
  • Prabhu Dayal Meena
    • 3
  • Arvind Kumar
    • 4
  1. 1.Department of Plant PathologyCCS Haryana Agricultural UniversityHisarIndia
  2. 2.Agriculture and Agi-Food Canada Saskatoon Research StationSaskatoonCanada
  3. 3.Crop Protection UnitDirectorate of Rapeseed – Mustard Research (ICAR)BharatpurIndia
  4. 4.Krishi Anusandhan Bhawan – IIIndian Council of Agricultural ResearchNew DelhiIndia

Personalised recommendations