Skip to main content

Biochemistry of Host–Pathogen Interaction

  • Chapter
  • First Online:
  • 462 Accesses

Abstract

Biochemical studies on the growth and survival of a pathogen and of the changes it induces in its host can ultimately lead to a better understanding of epidemiology, disease development, and control. With a few exceptions, such studies on white rust (WR) lag far behind those for diseases caused by other major groups of biotrophs. Ideal prerequisites for meaningful studies of the biochemistry of host–parasite interaction are (a) a clear understanding of the genetic control of virulence and avirulence in the parasite, and of susceptibility and resistance in the host; (b) precise histological and cytological descriptions of spore germination, infection, and the establishment and development of the infection; and (c) the availability of methods for growing the parasite alone and in combination with its host under controlled conditions. Unfortunately, these criteria have not been fully satisfied for any WR disease. Reduction in sugar content was proportionate to the disease severity and maximum reduction was observed in the infected leaves. Total free amino acids increased after infection in all the infected plant parts, and this increase was proportionate to the disease severity (Singh 2005).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aldesuquy, H. S., & Baka, Z. A. M. (1992). Physiological and biochemical changes in host leaf tissues associated with the growth of two biotrophic fungi growing in Egypt. Phyton, (Horn, Austria) , 32, 129–142.

    CAS  Google Scholar 

  • Bednarek, P., Schneider, B., Svatos, A., Oldham, N. J., & Hahlbrock, K. (2005). Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. Plant Physiology, 138, 1508–1570.

    Article  Google Scholar 

  • Benaroudj, N., Lee, D. H., & Goldberg, A. L. (2001). Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. The Journal of Biological Chemistry, 276, 24261–24267.

    Article  CAS  PubMed  Google Scholar 

  • Black, L. L., Gorden, D. T., & Williams, P. H. (1968a). Carbon dioxide exchange by radish tissue infected with Albugo candida measured with an infrared CO2 analyzer. Phytopathology, 58, 173–178.

    Google Scholar 

  • Black, L. L., Williams, P. H., & Pound, G. S. (1968b). Anaerobic metabolism of A. candida—infected radish cotyledons. Phytopathology, 58, 672–675.

    CAS  Google Scholar 

  • Bones, A. M., & Rossiter, J. T. (2006). The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry, 67, 1053–1067.

    Article  CAS  PubMed  Google Scholar 

  • Brandl, W., Herrmann, K., & Grotjahn, L. Z. (1984). Hydroxycinnamoyl esters of malic acid in small radish (Raphanus sativus L. var. sativus). Zeitschrift fur Naturforschung, 39c, 515–520.

    CAS  Google Scholar 

  • Chou, H. M., Bundock, N., Rolfe, S. A., & Scholes, J. D. (2000). Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Molecular Plant Pathology, 1, 99–113.

    Article  CAS  PubMed  Google Scholar 

  • Cooke, R. (1977). The biology of symbiotic fungi. London: John Wiley and Sons.

    Google Scholar 

  • Daly, J. M. (1976). In R. Heitefuss, R. & P. H. (Eds.), Physiological Plant Pathology (pp. 27–50, 450–479). Berlin: Springer.

    Google Scholar 

  • Debnath, M., Sharma, S. L., & Kant, U. (1998). Changes in carbohydrate contents and hydrolysing enzymes in white rust of mustard (Brassica juncea (L.) Czern. & Coss.) caused by A. candida in vivo and in vitro. Journal of Phytological Research, 11, 81–82.

    Google Scholar 

  • Dhawan, K., Yadava, T. P., Kaushik, C. D., & Thakral, S. K. (1981). Changes in phenolic compounds and sugars in relation to white rust of Indian mustard. Journal of Crop Improvement, 8, 142–144.

    Google Scholar 

  • Dhingra, R. K., Chauhan, N., & Chauhan, S. V. S. (1982). Biochemical changes in the floral parts of Brassica campestris infected with Albugo candida. Indian Phytopathology, 35, 177–179.

    CAS  Google Scholar 

  • Fahey, J.W., Zalcmann, A.T., & Talalay, P. (2001). The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry, 56, 5–51.

    Google Scholar 

  • Godika, S., & Pathak, A. K. (2005). Control of white rust and Alternaria blight diseases of mustard by foliar sprays of Ridomil. Pestology, 29, 9–10.

    CAS  Google Scholar 

  • Gupta, M. L., Singh, G., Raheja, R. K., Ahuja, K. L., & Banga, S. K. (1997). Chlorophyll content in relation to white rust (A. candida) resistance in Indian mustard. Cruciferae Newsletter, 19, 105–106.

    Google Scholar 

  • Hagemeier, J., Schneider, B., Oldham, N. & Hahlbrock, K. (2001). Accumulation of soluble and wall-wound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proceedings of the National Academy of Sciences, USA, 98, 753–758.

    Article  CAS  Google Scholar 

  • Hahlbrock, K., Bednarek, P., Ciokowski, I., Hamberger, B., Heise, A., Liedgens, H., Logemann, E., Nurnberger, T., Schmelzer, E., Somssich, I. E., & Tan, J. (2003). Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interaction. Proceedings of the National Academy of Sciences, USA, 100, 14569–14576.

    Article  CAS  Google Scholar 

  • Harding, H., Williams, P. H., & McNabola, S. S. (1968). Chlorophyll changes, photosynthesis, and ultrastructure of chloroplasts in Albugo candida induced “green islands” on detached Brassica juncea cotyledons. Canadian Journal of Botany, 46, 1229–1234.

    Article  CAS  Google Scholar 

  • Heitefuss, R., & Williams, P. H. (1976). Physiological plant pathology (pp. 466, 538, 569). Berlin: Springer.

    Book  Google Scholar 

  • Herman, R. P., & Herman, C. A. (1985). Prostaglandins or prostaglandin like substances are implicated in normal growth and development in oomycetes. Prostaglandins, 29, 819–830.

    Article  CAS  PubMed  Google Scholar 

  • Hirata, S. (1954). Studies on the phytohormone in the malformed portion of the diseased plants. I. The relation between the growth rate and the amount of free auxin in the fungous galls and virus-infected plants. Annals of the Phytopathological Society of Japan, 19, 33–38.

    Article  Google Scholar 

  • Hirata, S. (1956). Studies on the phytohormone in the malformed portion of the diseased plants. II. On the reformation and the situation of free-auxin in the tissues of fungous galls. Annals of the Phytopathological Society of Japan, 19, 185–190.

    Article  Google Scholar 

  • Kaur, P., Jost, R., Sivasithamparam, K., & Barbetti, M. J. (2011a). Proteome analysis of the A. candida–B. juncea pathosystem reveals that the timing of the expression of defence-related genes is a crucial determinant of pathogenesis. Journal of Experimental Botany, 62, 1285–1298.

    Article  CAS  Google Scholar 

  • Kiermayer, O. (1958). Paper chromatographic studies of the growth substances of Capsella bursa-pastoris after infection by Albugo candida and Peronospora parasitica. Osterreichische botanische Zeitschrift, 105, 515–528.

    Article  CAS  Google Scholar 

  • Kumari, K., Varghese, T. M., & Suryanarayana, D. (1970). Qualitative changes in the amino-acid contents of hypertrophied organs in mustard due to Albugo candida. Current Science, 39, 240–241.

    CAS  Google Scholar 

  • Lal, B. B., Prasad, M., & Ram, R. P. (1980). Amino acid constituents of inflorescence tissue of crucifers in health and disease, due to Albugo candida (Pers.) Kuntze. Zbl Bakt II Abt, 135, 240–245.

    CAS  Google Scholar 

  • Li, J. Y., Ou-Lee, T. M., Rabas, R., Amundson, R. G., & Last, R. L. (1993). Arabidopsis flavonoid mutants are hypersensitive to UV–B irradiation. Plant Cell, 5, 171–179.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang, Y. S., Choi, Y. H., Kim, H. K., Linthorst, H. J. M., & Verpoorte, R. (2006a). Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy. Phytochemistry, 67, 2503–2511.

    Article  CAS  Google Scholar 

  • Liang, Y. S., Kim, H. K., Lefeber, A. W. M., Erkelens, C., Choi, Y. H., Linthorst, H. J. M., & Verpoorte, R. (2006b). Identification of phenylpropanoids in methyl jasmonate treated Brassica rapa leaves using two-dimensional nuclear magnetic resonance spectroscopy. Journal of Chromatography, 1112, 148–155.

    Article  CAS  Google Scholar 

  • Long, D. E., & Cooke, R. C. (1974). Carbohydrate composition and metabolism of Senecio squalidus leaves infected with A. tragopogonis (Pers.) S.F. Gray. New Phytologist, 73, 889–899.

    Article  CAS  Google Scholar 

  • Long, D. E., Fung, A. K., McGee, E. E. M., Cooke, R. C., & Lewis, D. H. (1975). The activity of invertase and its relevance to the accumulation of storage polysaccharides in leaves infected by biotrophic fungi. New Phytologist, 74, 173–182.

    Article  CAS  Google Scholar 

  • Maheshwari, D. K., & Chaturvedi, S. N. (1983). Histochemical localizaiton of acid phosphatase in two fungus galls. Indian Phytopathology, 36, 167–170.

    Google Scholar 

  • Maheshwari, D. K., Chaturvedi, S. N., & Yadav, B. S. (1985a). Histochemical studies on hypertrophied inflorescence axis of Brassica juncea due to Albugo candida. Indian Phytopathology, 38, 263–266.

    Google Scholar 

  • Mendgen, K., & Hahn, M. (2002). Plant infection and the establishment of fungal biotrophy. Trends in Plant Science, 7, 352–356.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, K. K., Kolte, S. J., Nashaat, N. I. & Awasthi, R. P. (2009). Pathological and biochemical changes in Brassica juncea (mustard) infected with Albugo candida (white rust). Plant Pathology, 58, 80–86.

    Article  Google Scholar 

  • Misra, A., & Padhi, B. (1981). Impact of brown rust and white rust on the RNA content of their host tissues. In K. S. Bilgrami, R. S. Misra, P. C. Misra (Eds.), Advancing frontiers of mycology and plant pathology (pp. 175–182).

    Google Scholar 

  • O’Connell, R. J., & Panstruga, R. (2006). Teˆte a` teˆte inside a plant cell: Establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytologist, 171, 699–718.

    Article  PubMed  Google Scholar 

  • Pedras, M. S. C., & Ahiahonu, P. W. K. (2005). Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi. Phytochemistry, 66, 391–411.

    Article  CAS  PubMed  Google Scholar 

  • Pedras, M. S. C., Zheng, Q. A., & Sarma-Mamillapalle, V. K. (2007b). The phytoalexins from Brassicaceae: Structure, biological activity, synthesis and biosynthesis. Natural Product Communications, 2, 319–330

    CAS  Google Scholar 

  • Pedras, M. S. C., Zheng, Q. A., Gadagi, R. S., & Rimmer, S. R. 2008. Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress. Phytochemistry, 69, 894–910.

    Article  CAS  PubMed  Google Scholar 

  • Pruthi, V., Chawla, H. K. L., & Saharan, G. S. (2001). Albugo candida induced changes in phenolics and glucosinolates in leaves of resistant and susceptible cultivars of Brassica juncea. Cruciferae Newsletter, 23, 61–62.

    Google Scholar 

  • Purohit, S. D., Ramawat, K. G., & Arya, H. C. (1980). Metabolic characteristic at enzymatic levels of Achyranthes aspera leaves infected with white rust. Indian Journal of Experimental Biology, 18, 98–99.

    CAS  Google Scholar 

  • Rolland, F., Baena-Gonzalez, E., & Sheen, J. (2006). Sugar sensing and signalling in plants: conserved and novel mechanisms. Annual Review of Plant Biology, 57, 675–709.

    Article  CAS  PubMed  Google Scholar 

  • Rouxel, T., Kollmann, A., Boulidard, L., & Mithen, R. (1991). Abiotic elicitation of indole phytoalexins and resistance to Leptosphaeria maculans within Brassiceae. Planta, 184, 271–278.

    Article  CAS  PubMed  Google Scholar 

  • Scott, K. J. (1972). Obligate parasitism by phytopathogenic fungi. Biological Reviews, 47, 537–572.

    Article  Google Scholar 

  • Singh, H. V. (2000). Biochemical basis of resistance in Brassica species against downy mildew and white rust of mustard. Plant Disease Research, 15, 75–77.

    Google Scholar 

  • Singh, H. V. (2005). Biochemical changes in Brassica juncea cv. Varuna due to Albugo candida infection. Plant Disease Research (Ludhiana), 20, 167–168.

    Google Scholar 

  • Singh, S. B., Singh, D. V., & Bais, B. S. (1980) In vivo cellulase and pectinase production by A. candida and P. parasitica. Indian Phytopathology, 33, 370–371.

    CAS  Google Scholar 

  • Singh, Y., Rao, D. V., & Batra, A. (2011a). Biochemical changes in Brassica juncea (L.) Czern. & Coss. infected with Albugo candida Kuntz. (Pers.). International Journal of Pharmaceutical Sciences Review, 7, 74–78.

    Google Scholar 

  • Singh, Y., Rao, D. V., & Batra, A. (2011b). Enzyme activity changes in Brassica juncea (L.) Czern. & Coss. In response to Albugo candida Kuntze (Pers.). Journal of Chemical and Pharmaceutical Research, 3, 18–24.

    CAS  Google Scholar 

  • Spring, O., Haas, K., Lamla, I., Thurnhofer, S., & Vetter, W. (2005). The composition and taxonomic significance of fatty acid patterns in three white rust species: Albugo amaranthi, A. candida and A. tragopogonis (Peronosporales, Albuginaceae). Mycological Progress, 4, 179–184.

    Article  Google Scholar 

  • Srivastava, B. I. S., Shaw, M., & Vanterpool, T. C. (1962). Effect of Albugo candida (Pers. Ex Chev.) Kuntze. On growth substances in Brassica napus (L.). Canadian Journal of Botany, 40, 53–59.

    Article  CAS  Google Scholar 

  • Tan, J. W., Bednarek, P., Liu, J. K., Schneider, B., Svatos, A., & Hahlbrock, K. (2004). Universally occurring phenylpropanoid and species–species indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry, 65, 691–699.

    Article  CAS  PubMed  Google Scholar 

  • Thomton, J. H., & Cooke, R. C. 1970. Accumulation of dark-fixed carbon compounds in pustules of Albugo tragopogonis. Transactions of the British Mycological Society, 54, 483–485.

    Article  Google Scholar 

  • Veronese, P., Chen, X., Bluhm, B., Salmeron, J., Dietrich, R., & Mengiste, T. (2004). The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection. The Plant Journal, 40, 558–574.

    Article  CAS  PubMed  Google Scholar 

  • Voit, O. E. (2003). Biochemical and genomic regulation of the trehalose cycle in yeast: Review of observations and canonical model analysis. Journal of Theoretical Biology, 223, 55–78.

    Article  CAS  PubMed  Google Scholar 

  • Whetten, R. W., & Sederoff, R. (1995). Lignin biosynthesis. Plant Cell, 7, 1001–1013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whipps, J. M., & Cooke, R. C. (1978a). Comparative physiology of Albugo tragopogonis—infected and Puccinia lagenophorae infected plants of Senecio squalidus L. New Phytologist, 81, 307–319.

    Article  CAS  Google Scholar 

  • Widarto, H. T., Van der Meijden, E., Lefeber, A. W. M., Erkelens, C., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2006). Metabolomic differentiation of Brassica rapa leaves attacked by herbivore using two dimensional nuclear magnetic resonance spectroscopy. Journal of Chemical Ecology, 32, 1428–2417.

    Article  Google Scholar 

  • Williams, P. H., & Pound, G. S. (1964). Metabolic studies on the host-parasite complex of A. candida on radish. Phytopathology, 54, 446–451.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govind Singh Saharan .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Saharan, G., Verma, P., Meena, P., Kumar, A. (2014). Biochemistry of Host–Pathogen Interaction. In: White Rust of Crucifers: Biology, Ecology and Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1792-3_12

Download citation

Publish with us

Policies and ethics