Skip to main content

Predictive Methods for Organic Spectral Data Simulation

  • Chapter
  • First Online:
Practical Chemoinformatics

Abstract

New chemical entities (NCE) with potential bioactivity are synthesized, isolated, and thoroughly characterized for structure elucidation and purity before being subjected to further research. Spectroscopy is one of the most powerful means to deduce the correct structure and configuration of a compound or a fragment. In organic synthesis, the compounds are usually characterized by the spectral techniques such as ultraviolet–visible (UV–Vis), nuclear magnetic resonance (NMR), infrared (IR), mass spectrometry (MS), X-ray, etc. NMR and MS methods are employed in fragment-based drug discovery approaches to identify compounds from a high-throughput screen or a proteomics experiment. However, it is not possible to manually interpret the complex spectral data that require sophisticated computational tools for characterization. These tools aid in spectra analysis, peaks assignment, intensity, etc. and thereby annotate the compound with the appropriate functional group and fragments. The prediction algorithms are developed based on principles of quantum chemistry, machine learning, or simple database/pattern match-based methods. Some of the methods using quantum chemistry are accurate; however, they require more computational time; on the other hand, the machine learning methods such as neural network are faster but require more experimental data for improving their prediction capability. So, there is a trade-off between speed and accuracy, and the user has to decide his/her preference. A number of spectra prediction tools, commercial as well as open source, are discussed in this chapter accompanied with detailed tutorials on the use of some of them. To manage the data, many online servers and spectral databases are available today and a brief introduction to them is also provided. Here, we also describe an in-house-developed carbon and proton NMR chemical shift-based binary fingerprints and their use in virtual screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://missionscience.nasa.gov/ems/TourOfEMS_Booklet_Web.pdf. Accessed 31 Oct 2013

  2. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (eds) (2009) Introduction to spectroscopy. Brooks/Cole Cengage Learning, USA

    Google Scholar 

  3. Gunther H (1995) NMR spectroscopy: basic principles, concepts and applications in organic chemistry. Wiley

    Google Scholar 

  4. McDonald RS (1986) Review: infrared spectrometry. Anal Chem 58:1906–1925

    Article  CAS  Google Scholar 

  5. Schoonheydt RA (2010) UV-VIS-NIR spectroscopy and microscopy of heterogeneous catalysts. Chem Soc Rev 39:5051–5066

    Article  CAS  Google Scholar 

  6. Watson JT, Sparkman D (2007) Introduction to mass spectrometry. Wiley

    Google Scholar 

  7. Smyth MS, Martin JHJ (2000) X Ray crystallography. Mol Path 53:8–14

    Article  CAS  Google Scholar 

  8. Dyer JR (1965) Applications of organic spectroscopy of compounds. Prentice Hall

    Google Scholar 

  9. Silverstein RRM, Webster FK, Kiemle DJ (2005) The spectrometric identification of organic compounds. Wiley

    Google Scholar 

  10. Kalsi PS (2004) Spectroscopy of organic compounds. New age international publishers, New Delhi

    Google Scholar 

  11. Calloway D (1997) Beer-Lambert law. J Chem Educ 74:744

    Article  CAS  Google Scholar 

  12. Stuart B (2004) Infrared spectroscopy fundamentals and applications. Wiley, England

    Book  Google Scholar 

  13. Karthikeyan M, Imran (unpublished results)

    Google Scholar 

  14. Hamm P, Zani M (2011) Concepts and methods of 2D Infra red spectroscopy. Cambridge University press, New York

    Book  Google Scholar 

  15. Callaghan PT (1991) Principles of nuclear magnetic resonance spectroscopy. Oxford Science Publications, New York

    Google Scholar 

  16. Keeler J (2010) Understanding NMR spectroscopy. Wiley

    Google Scholar 

  17. Richards SA, Hollerton JC (2010) Essential practical NMR for organic chemistry. Wiley

    Google Scholar 

  18. Campos-Olivas R (2011) NMR screening and hit validation in fragment based drug discovery. Curr Top Med Chem 11(1):43–67

    Article  CAS  Google Scholar 

  19. Stothers J (1972) Carbon 13 NMR spectroscopy, vol 24 organic chemistry. Academic Press

    Google Scholar 

  20. Clayden J, Greeves N, Warren S (2012) Organic chemistry. Oxford

    Google Scholar 

  21. Hamming MC, Foster NC (1972) Interpretation of mass spectroscopy of organic compounds. Academic Press

    Google Scholar 

  22. Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476:109–113

    Article  CAS  Google Scholar 

  23. Fernandez C, Jahnke W (2004) New Approaches for NMR screening in drug discovery. Drug Discov Today Technol 1(3):277–283

    Article  CAS  Google Scholar 

  24. Liu P, Lu M, Zheng Q et al (2013) Recent advances of electrochemical mass spectrometry. Analyst

    Google Scholar 

  25. Kang EH, Lee EY, Lee YJ et al (2008) Clinical features and risk factors of postsurgical gout. Ann Rheum Dis 67:1271–1275

    Article  CAS  Google Scholar 

  26. Taber DF (2007) Organic Spectroscopic structure determination: a problem based learning approach. Oxford University Press

    Google Scholar 

  27. http://moltable.ncl.res.in/c/document_library/get_file?p_l_id=12401&folderId=12410&name=DLFE-1102.pdf

  28. Buchnicek J (1950) Colchicine in ripening seeds of the wild saffron (Colchicum autumnale L). Pharm Acta Helv 25:389–401

    CAS  Google Scholar 

  29. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high affinity ligands for proteins SAR by NMR. Science 274(5292):1531–1534

    Article  CAS  Google Scholar 

  30. Rynchnovsky SD (2006) Predicting NMR spectra by computational Methods: structure revision of hexacyclinol. Org Lett 8:2995–2898

    Google Scholar 

  31. Elyashberg M, Blinov K, Smurnyy Y, Churanova T, Williams A (2010) Empirical and DFT GIAO quantum mechanical methods of 13C chemical shifts prediction competitors or collaborators. Magnet Reson Chem 48(3):209–229

    Google Scholar 

  32. Hu Y, Li Y, Lam H (2011) A semiemprirical approach for predicting unobserved peptide MS MS spectra from spectral libraries. Proteomics 11(4702):4711

    Google Scholar 

  33. Charpenier T (2011) The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids. Solid State Nucl Magn Reson 40(1):1–20

    Article  Google Scholar 

  34. Will M, Joachim R (1997) Spec-Solv an innovation at work. J Chem Inf Comput Sci 37:403–404

    Article  CAS  Google Scholar 

  35. Blinov KA, Smurnyy YD, Elyashberg ME, Churanova TS, Kvasha M, Steinbeck C, Lefebvre BA, Williams AJ (2008) Performance validation of neural network of 13C NMR prediction using a publicly available data source. J Chem Inf Model 48:550–555

    Article  CAS  Google Scholar 

  36. Pretsch E, Furst A, Bodertscher M, Burgin R (1992) C13Shift: A computer program for the prediction of 13CNMR spectra based on an open set of additivity rules. J Chem Inf Model 32:291–295

    Article  CAS  Google Scholar 

  37. http://www.bruker.com/products/mr/NMR/NMR-software/software/topspin/overview.html

  38. Shen Y, Lange O, Delaglio F, Rossi P, Aramini JA, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105(12):4685–4690

    Article  CAS  Google Scholar 

  39. http://www.bioNMR.com/forum/NMR-dynamics-21/tensor-2-analysis-overall-internal-dynamics-54/. Accessed 31 Oct 2013

  40. http://www.cambridgesoft.com/Ensemble_for_Chemistry/ChemDraw/. Accessed 31 Oct 2013

  41. http://www.chemaxon.com/marvin/help/calculations/NMRpredict.html. Accessed 31 Oct 2013

  42. http://www.acdlabs.com/products/adh/NMR/NMR_pred/. Accessed 31 Oct 2013

  43. http://mestrelab.com/software/mnova-NMRpredict-desktop/. Accessed 31 Oct 2013

  44. Wiberg KB, Hammer JD, Zilm KW, Cheeseman JR (1999) NMR chemical shifts. 3. A comparison of acetylene, allene, and the higher cumulenes. J Org Chem 64:6394

    Article  CAS  Google Scholar 

  45. Spanton SG, Whittern D (2009) The development of an NMR chemical shift prediction application with the accuracy necessary to grade proton NMR spectra for identity. Magn Reson Chem 47(12):1055–1061

    Article  CAS  Google Scholar 

  46. Raymond AJ, Mehdi M (2004) The prediction of 1H NMR chemical shifts in organic compounds. Spectrosc Eur 16(4):20–22

    Google Scholar 

  47. http://www.msg.ameslab.gov/gamess/. Accessed 31 Oct 2013

  48. Roesky HW, Walawalkar MG, Ramaswamy M (2001) Is water a friend or foe in organometallic chemistry? The case of group 13 organometallic compounds. Acc Chem Res 34(3):201–211

    Article  CAS  Google Scholar 

  49. Gordon MS, Schmidt MW (2005) Advances in electronic structure theory: GAMESS a decade later. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years, pp. 1167–1189. Elsevier, Amsterdam

    Google Scholar 

  50. Pagenkopf B (2005) ACD/HNMR Predictor and ACD/CNMR Predictor. J Am Chem Soc 127(9):3232

    Article  CAS  Google Scholar 

  51. Chemicke L (2008) Drasar, Pavel Bulletin presents. Comparison of advantages and disadvantages of ACD/1D NMR Assistant, ACD/1D NMR Processor, and ACD/Labs NMR Predictor software. 102(4):299–300

    Google Scholar 

  52. http://insideinformatics.cambridgesoft.com/VideosAndDemos/Default.aspx?ID=52

  53. Wang H (2005) Application of chemdraw nmr tool: correlation of program-generated 13c chemical shifts and pKa values of para-substituted benzoic acids. J Chem Educ 82(9):1340

    Article  CAS  Google Scholar 

  54. http://www.schrodinger.com/productpage/14/7/. Accessed on 31 Oct 2013

  55. Saitoa H, Andob I, Ramamoorthy A (2010) Tensors the heart of NMR. Prog Nucl Magn Reson Spectrosc 57(20):181–228

    Article  Google Scholar 

  56. Mason J (1993) Solid State Nucl Magn Reson 2:285

    Google Scholar 

  57. Facelli JC (2011) Chemical shift tensors: theory and application to molecular structure problems. Prog Nucl Magn Reson Spectrosc 58(3–4):176–201

    Article  CAS  Google Scholar 

  58. http://www.gaussian.com/g_whitepap/NMRcomp.htm. Accessed 31 Oct 2013

  59. Nikolic G, Shimazaki T, Yoshihiro A (eds) (2011) Fourier transforms, Gaussian and Fourier Transform (GFT) method and screened Hartree-Fock exchange potential for first-principles band structure calculations. 15–36

    Google Scholar 

  60. http://www.scm.com/Products/Capabilities/SpectroscopicProperties.html. Accessed 31 Oct 2013

  61. Francesco RD, Stener M, Fronzoni G (2012) Theoretical study of near-edge X-ray absorption fine structure spectra of metal phthalocyanines at C and N K-edges. J Phys Chem A 116:2285–22894

    Article  Google Scholar 

  62. Cobas C, Seoane F, Dominiguez S, Sykora S, Davies AN (2011) A new approach to improving automated analysis of proton NMR spectra through global spectral deconvolution(GSD) 23(1)

    Google Scholar 

  63. Jens M, Maier W, Martin W, Reinhard M (2002) Using neural networks for 13C NMR chemical shift prediction-comparison with traditional methods. J Magn Reson 157(2):242–252

    Article  Google Scholar 

  64. Pearlman DA (1996) Fingar: a new genetic algorithm based method for fitting NMR data. J Biomol NMR 8(1):49–66

    Article  CAS  Google Scholar 

  65. http://www.wavefun.com/products/spartan.html. Accessed 31 October 2013

  66. Yang S, Bax A (2010) SPARTA + A modest improvement in empirical NMR chemical shift prediction by an artificial neural network. J Biomol NMR 48(1):13–22

    Article  Google Scholar 

  67. Plainchont B, Nuzillard JM (2013) Structure verification though computer assisted spectral assignment of NMR spectra. Magn Reson Chem 51(1):54–59

    Article  CAS  Google Scholar 

  68. Bertini I, Felli IC, Kuemmerle R, Moskau D, Pierattelli R (2004) 13C-13C NOESY: an attractive alternative for studying large macromolecules. J Am Chem Soc 126(2):464–465

    Article  CAS  Google Scholar 

  69. Kuhn S, Schlorer NE (2012) NMR structure determination in synthetic chemistry. Nachrichten aus der Cemie 60(11):1106–1107

    Article  CAS  Google Scholar 

  70. http://www.massbank.jp/?lang=en. Accessed 31 Oct 2013

  71. http://www.swgdrug.org. Accessed 31 Oct 2013

  72. Kazutoshi T, Hayamizu K, Shuitiro O (1991) Analytical sciences, spectral database system on PC with CD-ROM 7 (Suppl., Proc. Int. Congr. Anal. Sci., Pt. 1), 711–712

    Google Scholar 

  73. http://www.sigmaaldrich.com/labware/labware-products.html?TablePage=19816610

  74. Nitsche C (1996) SciFinder 2.0: Preserving the partnership between chemistry and the information professional. Database (Oxford) 19:51

    CAS  Google Scholar 

  75. http://jspecview.sourceforge.net/. Accessed 31 Oct 2013

  76. unpublished results

    Google Scholar 

  77. http://pubchem.ncbi.nlm.nih.gov/. Accessed 31 Oct 2013

  78. https://www.ebi.ac.uk/chembl/. Accessed 31 Oct 2013

  79. http://www.hmdb.ca/. Accessed 31 Oct 2013

  80. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/. Accessed 31 Oct 2013

  81. Toukach FV, Ananikov VP (2013) Recent advances in computational prediction of NMR parameters for the structural elucidation of carbohydrates: methods and limitations. Chem Soc Rev 42:8376

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthukumarasamy Karthikeyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Karthikeyan, M., Vyas, R. (2014). Predictive Methods for Organic Spectral Data Simulation. In: Practical Chemoinformatics. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1780-0_7

Download citation

Publish with us

Policies and ethics