Skip to main content

Docking and Pharmacophore Modelling for Virtual Screening

  • Chapter
  • First Online:
Practical Chemoinformatics

Abstract

Protein and ligand molecules as two separate entities appear and behave differently, but what happens when they come together and interact with each other is one of the interesting facts in modern molecular biology and molecular recognition. This interaction can be well explained with the concept of docking which in a simple way can be described as the study of how a molecule can bind to another molecule to result in a stable entity. The two binding molecules can be either a protein and a ligand or a protein and a protein. Irrespective of which two molecules are interacting, a docking process invariably includes two steps—conformational search through various algorithms and scoring or ranking. Even though prolific research has been carried out in this field, yet it is still a topic of current interest as there is a scope for improvement to rationalize binding interactions with biological function using docking program. This chapter focuses on how to set up and perform docking runs using freeware and commercial software. Most of the known docking protocols like induced fit docking, protein–protein docking, and pharmacophore-based docking have been discussed. The use of pharmacophore queries as filters in virtual screening is also demonstrated using suitable examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J Comput-Aided Mol Des 16:151–166

    Article  CAS  Google Scholar 

  2. Li H, Gao Z, Kang L et al (2006) TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res 34:W219–W224. doi:10.1093/nar/gkl114

    Article  CAS  Google Scholar 

  3. Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47:409–443

    Article  CAS  Google Scholar 

  4. Bello M, Martínez-Archundia M, Correa-Basurto J (2013) Automated docking for novel drug discovery. Expert Opin Drug Discov 8:821–834

    Article  CAS  Google Scholar 

  5. Glide, version 5.8, Schrödinger, LLC, New York, NY, 2012

    Google Scholar 

  6. http://www.nlm.nih.gov/medlineplus/druginfo/meds/a682550.html. Accessed 20 Oct 2013

  7. http://www.nlm.nih.gov/medlineplus/druginfo/meds/a682401.html. Accessed 20 Oct 2013

  8. http://www.nlm.nih.gov/medlineplus/druginfo/meds/a682402.html. Accessed 20 Oct 2013

  9. Keith J, Ilari A, Savino C (2008) Protein structure determination by x-ray crystallography. In: Keith JM (ed) Bioinformatics, methods in molecular biology, vol 2. Humana Press, New York, pp 63–87

    Google Scholar 

  10. Schrödinger Suite (2012) Protein Preparation Wizard; Epik version 2.3, Schrödinger, LLC, New York, NY, 2012; Impact version 5.8, Schrödinger, LLC, New York, NY, 2012; Prime version 3.1, Schrödinger, LLC, New York, NY, 2012.

    Google Scholar 

  11. LigPrep, version 2.5, Schrödinger, LLC, New York, NY, 2012

    Google Scholar 

  12. http://www.ncbi.nlm.nih.gov/pccompound. Accessed 20 Oct 2013

  13. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  14. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461

    CAS  Google Scholar 

  15. http://www.ebi.ac.uk/pdbsum/. Accessed 20 Oct 2013

  16. The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC.

    Google Scholar 

  17. Bahm H-J (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61–78

    Article  Google Scholar 

  18. Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489

    Article  CAS  Google Scholar 

  19. Kramer B, Rarey M, Lengauer T (1999) Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins 37:228–241

    Article  CAS  Google Scholar 

  20. Barreca ML, Iraci N, De Luca L, Chimirri A (2009) Induced-fit docking approach provides insight into the binding mode and mechanism of action of HIV-1 Integrase Inhibitors. ChemMedChem 4:1446–1456

    Article  CAS  Google Scholar 

  21. Schrödinger Suite (2012) Induced fit docking protocol; Glide version 5.8, Schrödinger, LLC, New York, NY, 2012; Prime version 3.1, Schrödinger, LLC, New York, NY, 2012.

    Google Scholar 

  22. Clauben H, Buning C, Rarey M, Lengauer T (2001) FlexE: efficient molecular docking considering protein structure variations. J Mol Biol 308:377–395

    Article  Google Scholar 

  23. Hetenyi C, van der Spoel D (2002) Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sci 11:1729–1737

    Article  CAS  Google Scholar 

  24. Campbell SJ, Gold ND, Jackson RM, Westhead DR (2003) Ligand binding: functional site location, similarity and docking. Curr Opin Struct Biol 13:389–395

    Article  CAS  Google Scholar 

  25. Sutherland JJ, Nandigam RK, Erickson JA, Vieth M (2007) Lessons in molecular recognition. 2. Assessing and improving cross-docking accuracy. J Chem Inf Model 47:2293–2302

    Article  CAS  Google Scholar 

  26. Verdonk ML, Mortenson PN, Hall RJ et al (2008) Protein-ligand docking against non-native protein conformers. J Chem Inf Model 48:2214–2225

    Article  CAS  Google Scholar 

  27. Wu G, Robertson DH, Brooks CL 3rd, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm. J Comput Chem 24(13):1549–1562

    Article  CAS  Google Scholar 

  28. McGann M (2011) FRED pose prediction and virtual screening accuracy. J Chem Inf Model 51(3):578–596

    Article  CAS  Google Scholar 

  29. http://www.eyesopen.com/. Accessed 20 Oct 2013

  30. Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci U S A 93:13–20

    Article  CAS  Google Scholar 

  31. Davis C, Harris HJ, Hu K et al (2012) In silico directed mutagenesis identifies the CD81/claudin-1 hepatitis C virus receptor interface. Cellular Microbiol 14:1892–1903

    Article  CAS  Google Scholar 

  32. Vincenzetti S, Pucciarelli S, Carpi FM et al (2013) Site directed mutagenesis as a tool to understand the catalytic mechanism of human cytidine deaminase. Protein Pept Lett 20:538–549

    Article  CAS  Google Scholar 

  33. Keskin O, Ma B, Rogale K et al (2005) Protein-protein interactions: organization, cooperativity and mapping in a bottom-up systems biology approach. Phys Biol 2:S24–S35

    Article  CAS  Google Scholar 

  34. Wendt MD (2012) Protein-Protein Interactions. doi:10.1007/978-3-642-28965-1

    Google Scholar 

  35. Villoutreix BO, Labbé CM, Lagorce D et al (2012) A leap into the chemical space of protein-protein interaction inhibitors. Curr Pharm Des 18:4648–4667

    Article  CAS  Google Scholar 

  36. Xenarios I, Rice DW, Salwinski L et al (2000) DIP: the database of interacting proteins. Nucleic Acids Res 28:289–291. doi:10.1093/nar/28.1.289

    Article  CAS  Google Scholar 

  37. Szklarczyk D, Franceschini A, Kuhn M et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568.

    Article  CAS  Google Scholar 

  38. Chatr-aryamontri A, Breitkreutz BJ, Heinicke S et al (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41:D816–D823. doi:10.1093/nar/gks1158

    Article  CAS  Google Scholar 

  39. http://string-db.org/. Accessed 20 Oct 2013

  40. http://hexserver.loria.fr/. Accessed 20 Oct 2013

  41. http://zdock.umassmed.edu/. Accessed 20 Oct 2013

  42. Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52(1):80–87

    Article  CAS  Google Scholar 

  43. Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein protein docking. Nucleic Acids Res 34:W310–W314

    Article  CAS  Google Scholar 

  44. http://graylab.jhu.edu/docking/rosetta/. Accessed 20 Oct 2013

  45. http://cluspro.bu.edu/login.php. Accessed 20 Oct 2013

  46. Matsuzaki Y, Uchikoga N, Ohue M et al (2013) MEGADOCK 3.0: a high-performance protein-protein interaction prediction software using hybrid parallel computing for petascale supercomputing environments. Source Code Biol Med 8:18. doi:10.1186/1751-0473-8-18

    Article  Google Scholar 

  47. http://www.ebi.ac.uk/msd-srv/capri/

  48. Kozakov D, Brenke R, Comeau SR, Vajda S (2006) PIPER: an FFT-based proteindocking program with pairwise potentials. Proteins 65:392–406

    Article  CAS  Google Scholar 

  49. Griffith R, Luu TTT, Garner J, Keller PA (2005) Combining structure-based drug design and pharmacophores. J Mol Graph Model 23:439–446.

    Article  CAS  Google Scholar 

  50. Shin WJ, Seon BL (2013) Recent advances in pharmacophore modeling and its application to anti-influenza drug discovery. Expert Opin Drug Discov 8:411–426

    Article  CAS  Google Scholar 

  51. Caporuscio F, Tafi A (2011) Pharmacophore modelling: a forty year old approach and its modern synergies. Curr Med Chem 18:2543–2553

    Article  CAS  Google Scholar 

  52. Hecker EA, Duraiswami C, Andrea TA, Diller DJ (2002) Use of catalyst pharmacophore models for screening of large combinatorial libraries. J Chem Inf Comput Sci 42(5):1204–1211

    Article  CAS  Google Scholar 

  53. Phase, version 3.4, Schrödinger, LLC, New York, NY, 2012

    Google Scholar 

  54. Coteron JM, Marco M, Esquivias J et al (2011) Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. J Med Chem 54:5540–5561. doi:10.1021/jm200592f

    Article  CAS  Google Scholar 

  55. ACD/ChemSketch, version 12, Advanced Chemistry Development, Inc., Toronto, ON, Canada, http://www.acdlabs.com, 2013

  56. Mills N (2006) ChemDraw Ultra 10.0. J Am Chem Soc 128:13649–13650

    Article  CAS  Google Scholar 

  57. Chen IJ, Foloppe N (2008) Conformational sampling of druglike molecules with MOE and catalyst: implications for pharmacophore modeling and virtual screening. J Chem Inf Model 48:1773–1791. doi:10.1021/ci800130k

    Article  CAS  Google Scholar 

  58. http://www.maybridge.com/default.aspx. Accessed 20 Oct 2013

  59. http://bioinfo3d.cs.tau.ac.il/PharmaGist/. Accessed 20 Oct 2013

  60. Schneidman-Duhovny D, Dror O, Inbar Y et al (2008) PharmaGist: a webserver for ligand-based pharmacophore detection. Nucleic Acids Res 36:W223–W228. doi:10.1093/nar/gkn187

    Article  CAS  Google Scholar 

  61. Cavasotto CN, Orry AJW, Abagyan RA (2005) The challenge of considering receptor flexibility in ligand docking and virtual screening. Curr Comput Aided Drug Des 1:423–440

    Article  CAS  Google Scholar 

  62. Vajda S, Hall DR, Kozakov D (2013) Sampling and scoring: a marriage made in heaven. Proteins 81:1874–1884

    Article  CAS  Google Scholar 

  63. Seeliger D, Groot BL (2010) Conformational transitions upon ligand binding: holo structure prediction from Apo conformation. PLoS Comput Biol 6(1):e1000634

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthukumarasamy Karthikeyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Karthikeyan, M., Vyas, R. (2014). Docking and Pharmacophore Modelling for Virtual Screening. In: Practical Chemoinformatics. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1780-0_4

Download citation

Publish with us

Policies and ethics