Skip to main content

Chemoinformatics Approach for the Design and Screening of Focused Virtual Libraries

  • Chapter
  • First Online:

Abstract

It is challenging to handle a large volume of molecular data without appropriate tools. Here, we describe the need and the approaches for the development of focussed virtual libraries to design efficient molecules and optimize them for lead generation. The experimental chemists and biologists are more interested in properties of chemicals and their response to biological system in both beneficial and adverse effects context rather than just their structures. In this chapter, the focus is to relate newly designed chemical structures to their predicted activity, property or toxicity. Property prediction tools save time, money and lives of experimental animals. They come in handy while taking informed decisions especially in certain cases involving pharmacodynamic studies of drug molecules in humans where there are inevitable ethical and safety concerns. Property prediction is an important component in virtual screening which is at the heart of drug design and the most important step where chemoinformatics plays a major role. The other fields where structure–activity relation-based principles hold good for virtual screening are agrochemicals and environmental science, specifically the toxicity and biodegradability prediction of pollutant molecules. In this chapter, we will show how to design software tools to handle generation of focussed virtual libraries from a given set of molecules with common features, fragments or bioactivity spectrum.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Interested readers are encouraged to download the supporting materials related to ChemStar application (JCIM’ 2008, ACS).

References

  1. Leo A, Hansch C, Church C (1969) Comparison of parameters currently used in the study of structure-activity relationships. J Med Chem 12:766–771

    Article  CAS  Google Scholar 

  2. Admason GW, Bawdon D (1976) An empirical method of structure-activity correlation for polysubstituted cyclic compounds using wiswesser line notation. J Chem Inf Comput Sci 16(3):161–165

    Article  Google Scholar 

  3. Choplin, F (1990) Computers and the medicinal chemist. In: Hansch C, Sammes PG, Taylor JB (eds) Comprehensive Medicinal Chemistry Pergamon Press, UK 4:33–58

    Google Scholar 

  4. Tropsha A, Gramatica P, Gombar V (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. Mol Inform 22(1):69–77

    CAS  Google Scholar 

  5. http://www.moleculardescriptors.eu/

  6. Seybold PG, May M, Bagel UA (1987) Molecular structure property relationships. J Chem Educ 64(7):575

    Article  CAS  Google Scholar 

  7. Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics, vol 2. Wiley-VCH

    Google Scholar 

  8. Karelson M (2000) Molecular descriptors in QSAR/QSPR. Wiley

    Google Scholar 

  9. http://www.vcclab.org/lab/indexhlp/consdes.html

  10. http://www.codessa-ro.com/descriptors/electrostatic/index.htm

  11. Balaban AT (1997) From chemical topology to three dimensional geometry. Plenum Press, New York, 1–24

    Google Scholar 

  12. Karelson M, Lobanov V, Katritzky AR (1996) Quantum chemical descriptors in QSAR/QSPR studies. Chem Rev 96:1027–1043

    Article  CAS  Google Scholar 

  13. Enoch SJ (2010)The use of quantum mechanics derived descriptors in computational toxicology. In: Puzyn T et al (ed) Challenges and advances in computational chemistry and physics, vol 8. Springer Science pp 24–27

    Google Scholar 

  14. Stanton D (1999) Evaluation and use of BCUT descriptors in QSAR and QSPR studies. J Chem Inf Comput Sci 39(1):11–20

    Article  CAS  Google Scholar 

  15. Ma SL, Joung JY, Lee S, Cho KH, No KT (2012) PXR ligand classification model with SFED weighted WHIM and CoMMA descriptors. SAR QSAR Environ Res 23(5–6):485–504

    Article  CAS  Google Scholar 

  16. http://rdkit.org/docs/api/rdkit.Chem.MACCSkeys-pysrc.html

  17. Todeschini R, Bettiol C, Giurin G, Gramatica P, Miana P, Argese E (1996) Modeling and prediction by using WHIM descriptors in QSAR studies: submitochondrial particles(SMP) as toxicity biosensors of chlorophenols. Chemosphere 33:71–79

    Article  CAS  Google Scholar 

  18. Hinselmann G, Rosenbaum L, Jahn A, Fechner N, Zell AJ (2011) Compound Mapper: an open source JAVA library and command line tool for chemical fingerprints. J Chemoinformatics 3:3

    Article  CAS  Google Scholar 

  19. Rogers D, Mathew H(2010) Extended connectivity fingerprints. J Chem Inf Model 50(5):742–754

    Article  CAS  Google Scholar 

  20. Bender A, Hamse Y, Mussa HY, Glen C (2010) Similarity searching of chemical databases using atom environment descriptors (Molprint 2D) evaluation of performance. J Chem Inf Comput Sci 44:1708–1718

    Article  Google Scholar 

  21. Deursen R, Blum Lorenz CB, Reymond JL (2010) A searchable map of PubChem. J Chem Inf Model 50(11):1924–1934

    Article  Google Scholar 

  22. Chemscreener unpublished results

    Google Scholar 

  23. Jorgenson WL, Duffy EM (2002) Prediction of drug solubility from structure. Adv Drug Deliv Rev 54:355–366

    Article  Google Scholar 

  24. Livingstone DJ, Waterbeemd VD, Han I (2009) In silico prediction of human oral bioavailability. Method Prin Med Chem 40:433–451

    Article  CAS  Google Scholar 

  25. Persson LC, Porter CJ, Charman WN, Bergstrom CA (2013) Computational prediction of drug solubility in lipid based formulation excipients. Pharm Res PMID:23771564

    Google Scholar 

  26. Faller B, Ertl P (2007) Computational approaches to determine drug solubility. Adv Drug Deliv Rev 59:533–545

    Article  CAS  Google Scholar 

  27. Cortes-Cabrera A, Morris GM, Finn PW, Morreale A, Gago F (2013) Comparison of ultra fast 2D and 3D descriptors for side effect prediction and network analysis in polypharmacology. Br J Pharmacol. doi:10.1111/bph.12294

    Google Scholar 

  28. Rice BM, Byrd EF (2013) Evaluation of electrostatic descriptors for crystalline density. Langmuir

    Google Scholar 

  29. Garcia EJ, Pellitero PJ, Jallut C, Pirngruber GD (2013) Modeling adsorption properties on the basis of microscopic, molecular structural descriptors for non polar adsorbents. J Chem Inf Model

    Google Scholar 

  30. Wegner JK, Zell A (2003) Prediction of aqueous solubility and partition coefficient optimized by genetic algorithm based descriptors selection method. J Chem Inf Comput Sci 43(3):1077–1084

    Article  CAS  Google Scholar 

  31. Steinbeck C, Hoppe C, Kuhn S, Matteo F, Guha R, Willighagen EL (2006) Recent development of the CDK (Chemistry Development Kit) an open source JAVA library for chemo and bioinformatics. Curr Pharm Design 12(17):2111–2120

    Article  CAS  Google Scholar 

  32. http://www.rguha.net/code/java/cdkdesc.html

  33. Steinbeck C (2008) Open toolkits and applications for chemoinformatics teaching Abstracts of Papers, 235th ACS National Meeting, New Orleans, LA, United States, April 6–10

    Google Scholar 

  34. http://padel.nus.edu.sg/software/padeldescriptor/

  35. Yap CW (2011) Padel descriptor an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32(7):1466–1474

    Article  CAS  Google Scholar 

  36. http://nisla05.niss.org/PowerMV/?q=PowerMV

  37. Liu K, Feng J, Young SS (2005) A software environment for molecular viewing, descriptor generation, data analysis and hit evaluation. J Chem Inf Model 45(2):515–522

    Article  CAS  Google Scholar 

  38. http://www.chemaxon.com/marvin/help/calculations/calculator-plugins.html

  39. http://cheminformatics.org/datasets/

  40. Xueliang L, Yongtang S, Wang L (2012) On a relation between randic index and algebraic connectivity. Match 68(3):843–839

    Google Scholar 

  41. Ivanciuc O, Ivanciuc T, Douglas KJ, William SA, Balaban T (2001) Wiener index extension by counting even/odd graph distances. J Chem Inf Model 41(3):536–549

    Article  CAS  Google Scholar 

  42. Benet LZ, Broccatelli F, Oprea TI (2011) BDDCS applied to over 900 drugs. AAPS J 13(4):519–547

    Article  CAS  Google Scholar 

  43. Lu D, Chambers P, Wipf P, Xie X-Q, Englert D, Weber S (2012) Lipophilicity screening of novel drug like compounds and comparison to clogp. J Chromatogr A 1258:161–167

    Article  CAS  Google Scholar 

  44. http://www.eyesopen.com/oechem-tk

  45. QikProp (2012) version 3.5, Schrödinger, LLC, New York

    Google Scholar 

  46. Kerns E, Li D (2010) Drug like properties, concepts, structure design and methods. Academic Press

    Google Scholar 

  47. LigPrep (2012) version 2.5, Schrödinger, LLC, New York

    Google Scholar 

  48. Molecular Operating Environment (MOE) (2012)10; Chemical Computing Group Inc., 1010 Montreal, QC, Canada, H3A 2R7, 2012

    Google Scholar 

  49. Gerardo CMM, Yovani MP, Khan MTH, Arjumand A, Khan KM, Torrens F, Rotondo R (2007) Dragon method for finding novel tyrosinase inhibitors biosilico identification and experimental in vitro assays. Eur J Med Chem 42(11–12):1370–1381

    Google Scholar 

  50. http://accelrys.com/products/discovery-studio/admet.html

  51. Karthikeyan M, Krishnan S, Pandey AK, Bender A, Tropsha A (2008) Distributed chemical computing using ChemStar: An open source java remote method invocation architecture applied to large scale molecular data from pubchem. J Chem Inf Model 48(4):691–703

    Article  CAS  Google Scholar 

  52. http://www.molinspiration.com/

  53. http://www.pharmaexpert.ru/passonline/

  54. Lusci A, Pollastri G, Baldi P (2013) Deep architectures and deep learning in Chemoinformatics: the prediction of aqueous solubility for drug like molecules. J Chem Inf Model 53(7):1563–1575

    Article  CAS  Google Scholar 

  55. Sorana BD, Lorentz J (2011) Predictivity approach for quantitative structure prediction models: application for blood barrier permeation for diverse drug like compounds. Int J Mol Sci 12(7):4348–4386

    Google Scholar 

  56. www.preadmet.bmdrc.org/

  57. http://www.epa.gov/ncct/dsstox/

  58. http://www.epa.gov/opptintr/exposure/pubs/episuite.htm

  59. Ulrich A, Koch C, Speitling M, Hansske FG (2002) Modern methods to produce natural-product libraries. Curr Opin Chem Biol 6(4):453–458

    Article  Google Scholar 

  60. Bemis GW, Murcko MA (1999) Properties of known drugs, 2: Side chains. J Med Chem 42(25):5095–5099

    Article  CAS  Google Scholar 

  61. Wetzel S, Karsten K, Renner S, Rauh D, Oprea TI, Mutzel P, Waldmann H (2009) Interactive exploration of chemical space with scaffold hunter. Nat Chem Biol 5(9):696

    Article  CAS  Google Scholar 

  62. http://www.eyesopen.com/brood

  63. Van Drie JH (2009) ReCore. J Am Chem Soc 131(4):1617

    Google Scholar 

  64. http://www.chemcomp.com/journal/newscaffold.htm

  65. Core Hopping (2011), version 1.1, Schrödinger, LLC, New York

    Google Scholar 

  66. Schuller A, Hahnke V, Schneider G (2007) SmiLib v2.0: A Java-Based Tool for Rapid Combinatorial Library Enumeration. QSAR Comb Sci 3:407–410

    Article  Google Scholar 

  67. http://gecco.org.chemie.uni-frankfurt.de/smilib/

  68. http://www.chemcomp.com/MOE-Cheminformatics_and_QSAR.htm#CombinatorialLibraryDesign

  69. Tropsha A (2008) Integrated chemo and bioinformatics approaches to virtual screening. In: Tropsha A, Varnek A (ed) Chemoinformatics approaches to virtual screening. SC Publishing, pp 295–325

    Google Scholar 

  70. Perola E, Xu K, Kollmeyer TM, Kaufmann SH, Prendergast FG, Pang Y-P (2000) Successful virtual screening of a chemical database for farnesyl transferase inhibitor leads. J Med Chem 43(3):401–408

    Article  CAS  Google Scholar 

  71. Oprea TI (2002) Virtual screening in lead discovery a viewpoint. Molecules 7:51–62

    Article  CAS  Google Scholar 

  72. Unpublished results

    Google Scholar 

  73. http://www.cdc.gov/niosh/rtecs/default.html

  74. http://www2a.cdc.gov/nioshtic-2/

  75. http://pubchem.ncbi.nlm.nih.gov/

  76. https://www.ebi.ac.uk/chembl/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthukumarasamy Karthikeyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Karthikeyan, M., Vyas, R. (2014). Chemoinformatics Approach for the Design and Screening of Focused Virtual Libraries. In: Practical Chemoinformatics. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1780-0_2

Download citation

Publish with us

Policies and ethics