Neuroinvasive and Neurotropic Human Respiratory Coronaviruses: Potential Neurovirulent Agents in Humans

  • Marc DesforgesEmail author
  • Alain Le Coupanec
  • Élodie Brison
  • Mathieu Meessen-Pinard
  • Pierre J. Talbot
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 807)


In humans, viral infections of the respiratory tract are a leading cause of morbidity and mortality worldwide. Several recognized respiratory viral agents have a neuroinvasive capacity since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Among the various respiratory viruses, coronaviruses are important pathogens of humans and animals. Human Coronaviruses (HCoV) usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly, and immune-compromised individuals, they can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, respiratory distress syndrome, or even severe acute respiratory syndrome (SARS). The respiratory involvement of HCoV has been clearly established since the 1960s. In addition, for almost three decades now, the scientific literature has also demonstrated that HCoV are neuroinvasive and neurotropic and could induce an overactivation of the immune system, in part by participating in the activation of autoreactive immune cells that could be associated with autoimmunity in susceptible individuals. Furthermore, it was shown that in the murine CNS, neurons are the main target of infection, which causes these essential cells to undergo degeneration and eventually die by some form of programmed cell death after virus infection. Moreover, it appears that the viral surface glycoprotein (S) represents an important factor in the neurodegenerative process. Given all these properties, it has been suggested that these recognized human respiratory pathogens could be associated with the triggering or the exacerbation of neurological diseases for which the etiology remains unknown or poorly understood.


Respiratory viral infection Coronavirus Neuroinvasion CNS infection Neurological diseases 


  1. 1.
    Vareille M, Kieninger E, Edwards MR, Regamey N (2011) The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev 24(1):210–229. doi: 10.1128/CMR.00014-10 Google Scholar
  2. 2.
    Jartti T, Jartti L, Ruuskanen O, Soderlund-Venermo M (2012) New respiratory viral infections. Curr Opin Pulm Med 18(3):271–278. doi: 10.1097/MCP.0b013e328351f8d4 Google Scholar
  3. 3.
    Ison MG, Hayden FG (2002) Viral infections in immunocompromised patients: what’s new with respiratory viruses? Curr Opin Infect Dis 15(4):355–367Google Scholar
  4. 4.
    Cesario TC (2012) Viruses associated with pneumonia in adults. Clin Infect Dis 55(1):107–113. doi: 10.1093/cid/cis297 Google Scholar
  5. 5.
    Sloots TP, Whiley DM, Lambert SB, Nissen MD (2008) Emerging respiratory agents: new viruses for old diseases? J Clin Virol 42(3):233–243. doi: 10.1016/j.jcv.2008.03.002 Google Scholar
  6. 6.
    Brouard J, Vabret A, Nimal-Cuvillon D, Bach N, Bessiere A, Arion A, Freymuth F (2007) Epidemiology of acute upper and lower respiratory tract infections in children. Rev Prat 57(16):1759–1766Google Scholar
  7. 7.
    McGavern DB, Kang SS (2011) Illuminating viral infections in the nervous system. Nat Rev Immunol 11(5):318–329. doi: 10.1038/nri2971 Google Scholar
  8. 8.
    Giraudon P, Bernard A (2010) Inflammation in neuroviral diseases. J Neural Trans 117(8):899–906. doi: 10.1007/s00702-010-0402-y Google Scholar
  9. 9.
    Whitley RJ, Gnann JW (2002) Viral encephalitis: familiar infections and emerging pathogens. Lancet 359(9305):507–513. doi: 10.1016/S0140-6736(02)07681-X Google Scholar
  10. 10.
    Hankins DG, Rosekrans JA (2004) Overview, prevention, and treatment of rabies. Mayo Clin Proc 79(5):671–676Google Scholar
  11. 11.
    Aurelian L (2005) HSV-induced apoptosis in herpes encephalitis. Curr Top Microbiol Immunol 289:79–111Google Scholar
  12. 12.
    Mackenzie JS, Gubler DJ, Petersen LR (2004) Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10(12 suppl):S98–S109. doi: 10.1038/nm1144 Google Scholar
  13. 13.
    Mattson MP, Haughey NJ, Nath A (2005) Cell death in HIV dementia. Cell Death Differ 12(1):893–904. doi: 10.1038/sj.cdd.4401577 Google Scholar
  14. 14.
    Nath A, Berger J (2004) HIV Dementia. Curr Treat Opt Neurol 6(2):139–151Google Scholar
  15. 15.
    Gordon J, Gallia GL, Del Valle L, Amini S, Khalili K (2000) Human polyomavirus JCV and expression of myelin genes. J Neurovirol 6(suppl 2):S92–S97Google Scholar
  16. 16.
    Weissert R (2011) Progressive multifocal leukoencephalopathy. J Neuroimmunol 231(1–2):73–77. doi: 10.1016/j.jneuroim.2010.09.021 Google Scholar
  17. 17.
    Rima BK, Duprex WP (2005) Molecular mechanisms of measles virus persistence. Virus Res 111(2):132–147. doi: 10.1016/j.virusres.2005.04.005 Google Scholar
  18. 18.
    Kaplan JE, Osame M, Kubota H, Igata A, Nishitani H, Maeda Y, Khabbaz RF, Janssen RS (1990) The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J Acquir Immune Defic Syndr 3(11):1096–1101Google Scholar
  19. 19.
    Itzhaki RF, Wozniak MA, Appelt DM, Balin BJ (2004) Infiltration of the brain by pathogens causes Alzheimer’s disease. Neurobiol Aging 25(5):619–627. doi: 10.1016/j.neurobiolaging.2003.12.021 Google Scholar
  20. 20.
    Stensballe LG, Devasundaram JK, Simoes EA (2003) Respiratory syncytial virus epidemics: the ups and downs of a seasonal virus. Pediatr Infect Dis J 22(2):S21–S32. doi: 10.1097/01.inf.0000053882.70365.c9 Google Scholar
  21. 21.
    Kawashima H, Ioi H, Ushio M, Yamanaka G, Matsumoto S, Nakayama T (2009) Cerebrospinal fluid analysis in children with seizures from respiratory syncytial virus infection. Scand J Infect Dis 41(3):228–231. doi: 10.1080/00365540802669543 Google Scholar
  22. 22.
    Zlateva KT, Van Ranst M (2004) Detection of subgroup B respiratory syncytial virus in the cerebrospinal fluid of a patient with respiratory syncytial virus pneumonia. Pediatr Infect Dis J 23(11):1065–1066Google Scholar
  23. 23.
    Morichi S, Kawashima H, Ioi H, Yamanaka G, Kashiwagi Y, Hoshika A, Nakayama T, Watanabe Y (2011) Classification of acute encephalopathy in respiratory syncytial virus infection. J Infect Chemother 17(6):776–781. doi: 10.1007/s10156-011-0259-5 Google Scholar
  24. 24.
    Millichap JJ, Wainwright MS (2009) Neurological complications of respiratory syncytial virus infection: case series and review of literature. J Child Neurol 24(12):1499–1503. doi: 10.1177/0883073808331362 Google Scholar
  25. 25.
    Espinoza JA, Bohmwald K, Cespedes PF, Gomez RS, Riquelme SA, Cortes CM, Valenzuela JA, Sandoval RA, Pancetti FC, Bueno SM, Riedel CA, Kalergis AM (2013) Impaired learning resulting from respiratory syncytial virus infection. Proc Natl Acad Sci USA 110(22):9112–9117. doi: 10.1073/pnas.1217508110 Google Scholar
  26. 26.
    O’Donnell LA, Rall GF (2010) Blue moon neurovirology: the merits of studying rare CNS diseases of viral origin. J Neuroimmune Pharmacol 5(3):443–455. doi: 10.1007/s11481-010-9200-4 Google Scholar
  27. 27.
    Wilson MR, Ludlow M, Duprex WP (2013) Human paramyxoviruses and infections of the central nervous system. In: Singh SK, Ruzek D (eds) Neuroviral infections. RNA viruses and retroviruses. CRC Press/Taylor and Francis, Boca Raton, pp 341–372Google Scholar
  28. 28.
    Escaffre O, Borisevich V, Rockx B (2013) Pathogenesis of Hendra and Nipah virus infection in humans. J Infect Dev Ctries 7(4):308–311. doi: 10.3855/jidc.3648 Google Scholar
  29. 29.
    Wong KT (2010) Emerging epidemic viral encephalitides with a special focus on henipaviruses. Acta Neuropathol 120(3):317–325. doi: 10.1007/s00401-010-0720-z Google Scholar
  30. 30.
    Munster VJ, Prescott JB, Bushmaker T, Long D, Rosenke R, Thomas T, Scott D, Fischer ER, Feldmann H, de Wit E (2012) Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci Rep 2:736. doi: 10.1038/srep00736 Google Scholar
  31. 31.
    Zeng J, Wang G, Kang-Sheng L (2013) Influenza virus and CNS infections. In: Singh SK, Ruzek D (eds) Neuroviral Infections. RNA viruses and retroviruses. CRC Press/Taylor and Francis, Boca Raton, pp 325–339Google Scholar
  32. 32.
    Kuiken T, Riteau B, Fouchier RA, Rimmelzwaan GF (2012) Pathogenesis of influenza virus infections: the good, the bad and the ugly. Curr Opin Virol 2(3):276–286. doi: 10.1016/j.coviro.2012.02.013 Google Scholar
  33. 33.
    Matsuzaki Y, Katsushima N, Nagai Y, Shoji M, Itagaki T, Sakamoto M, Kitaoka S, Mizuta K, Nishimura H (2006) Clinical features of influenza C virus infection in children. J Infect Dis 193(9):1229–1235. doi: 10.1086/502973 Google Scholar
  34. 34.
    Gouarin S, Vabret A, Dina J, Petitjean J, Brouard J, Cuvillon-Nimal D, Freymuth F (2008) Study of influenza C virus infection in France. J Med Virol 80(8):1441–1446. doi: 10.1002/jmv.21218 Google Scholar
  35. 35.
    Munier S, Moisy D, Marc D, Naffakh N (2010) Interspecies transmission, adaptation to humans and pathogenicity of animal influenza viruses. Pathol Biol 58(2):e59–e68. doi: 10.1016/j.patbio.2010.01.012 Google Scholar
  36. 36.
    Nicholson KG, Wood JM, Zambon M (2003) Influenza. Lancet 362(9397):1733–1745. doi: 10.1016/S0140-6736(03)14854-4 Google Scholar
  37. 37.
    Jang H, Boltz DA, Webster RG, Smeyne RJ (2009) Viral parkinsonism. Biochim Biophys Acta 1792(7):714–721. doi: 10.1016/j.bbadis.2008.08.001 Google Scholar
  38. 38.
    Wang GF, Li W, Li K (2010) Acute encephalopathy and encephalitis caused by influenza virus infection. Curr Opin Neurol 23(3):305–311Google Scholar
  39. 39.
    Millichap JG, Millichap JJ (2006) Role of viral infections in the etiology of febrile seizures. Pediatr Neurol 35(3):165–172. doi: 10.1016/j.pediatrneurol.2006.06.004 Google Scholar
  40. 40.
    Toovey S (2008) Influenza-associated central nervous system dysfunction: a literature review. Travel Med Infect Dis 6(3):114–124. doi: 10.1016/j.tmaid.2008.03.003 Google Scholar
  41. 41.
    Ozkale Y, Erol I, Ozkale M, Demir S, Alehan F (2012) Acute disseminated encephalomyelitis associated with influenza A H1N1 infection. Pediatr Neurol 47(1):62–64. doi: 10.1016/j.pediatrneurol.2012.03.019 Google Scholar
  42. 42.
    Beraki S, Aronsson F, Karlsson H, Ogren SO, Kristensson K (2005) Influenza A virus infection causes alterations in expression of synaptic regulatory genes combined with changes in cognitive and emotional behaviors in mice. Mol Psychiatry 10(3):299–308. doi: 10.1038/ Google Scholar
  43. 43.
    Jurgens HA, Amancherla K, Johnson RW (2012) Influenza infection induces neuroinflammation, alters hippocampal neuron morphology, and impairs cognition in adult mice. J Neurosci 32(12):3958–3968. doi: 10.1523/JNEUROSCI.6389-11.2012 Google Scholar
  44. 44.
    Vabret A, Dina J, Brison E, Brouard J, Freymuth F (2009) Human coronaviruses. Pathol Biol 57(2):149–160. doi: 10.1016/j.patbio.2008.02.018 Google Scholar
  45. 45.
    Buchmeier MJ, Lane TE (1999) Viral-induced neurodegenerative disease. Curr Opin Microbiol 2 (4):398–402. doi:mc2416 [pii]Google Scholar
  46. 46.
    Cavanagh D (2005) Coronaviruses in poultry and other birds. Avian Pathol 34(6):439–448. doi: 10.1080/03079450500367682 Google Scholar
  47. 47.
    Talbot PJ, Desforges, M, Brison, E, Jacomy, H (2011) Coronaviruses as Encephalitis-inducing infectious agents. In: Tkachev S (ed) Non-flavirus Encephalitis. In-Tech, pp 185–202Google Scholar
  48. 48.
    Desforges M, Favreau DJ, Brison E, Desjardins J, Meessen-Pinard M, Jacomy H, Talbot PJ (2013) Human coronaviruses. Respiratory pathogens revisited as infectious neuroinvasive, neurotropic, and neurovirulent agents. In: Singh SK, Ruzek D (eds) Neuroviral infections. RNA viruses and retroviruses. CRC Press/Taylor and Francis, Boca Raton, pp 93–121Google Scholar
  49. 49.
    de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, Perlman S, Poon L, Rottier PJM, Talbot PJ, Woo PCY, Ziebuhr J (eds) (2012) Family coronaviridae. Virus taxonomy: ninth report of the international commitee on taxonomy of viruses. Elsevier, New YorkGoogle Scholar
  50. 50.
    de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, Fouchier RA, Galiano M, Gorbalenya AE, Memish Z, Perlman S, Poon LL, Snijder EJ, Stephens GM, Woo PC, Zaki AM, Zambon M, Ziebuhr J (2013) Middle East respiratory syndrome coronavirus (MERS-CoV); Announcement of the Coronavirus Study Group. J Virol. doi: 10.1128/JVI.01244-13 Google Scholar
  51. 51.
    Saif LJ (2008) Coronaviruses of domestic livestock and poultry: interspecies transmission, pathogenesis, and immunity. In: Perlman S, Gallagher T, Snijder EJ (eds) Nidoviruses. ASM Press, Washington D.C, pp 279–298Google Scholar
  52. 52.
    Foley JE, Lapointe JM, Koblik P, Poland A, Pedersen NC (1998) Diagnostic features of clinical neurologic feline infectious peritonitis. J Vet Intern Med 12(6):415–423Google Scholar
  53. 53.
    Kline K, Joseph R, Averill DAJ (1994) Feline infectious peritonitis with neurological involvement: clinical and pathological findings in 24 cats. J Am Anim Hosp Assoc 30:111–118Google Scholar
  54. 54.
    Foley JE, Rand C, Leutenegger C (2003) Inflammation and changes in cytokine levels in neurological feline infectious peritonitis. J Feline Med Surg 5(6):313–322Google Scholar
  55. 55.
    Slauson DO, Finn JP (1972) Meningoencephalitis and panophthalmitis in feline infectious peritonitis. J Am Vet Med Assoc 160(5):729–734Google Scholar
  56. 56.
    Legendre AM, Whitenack DL (1975) Feline infectious peritonitis with spinal cord involvement in two cats. J Am Vet Med Assoc 167(10):31–32Google Scholar
  57. 57.
    Greig AS, Mitchell D, Corner AH, Bannister GL, Meads EB, Julian RJ (1962) A hemagglutinating virus producing encephalomyelitis in baby pigs. Can J Comp Med Vet Sci 26(3):49–56Google Scholar
  58. 58.
    Alexander TJ (1962) Viral encephalomyelitis of swine in Ontario–experimental and natural transmission. Am J Vet Res 23:756–762Google Scholar
  59. 59.
    Andries K, Pensaert MB (1980) Virus isolated and immunofluorescence in different organs of pigs infected with hemagglutinating encephalomyelitis virus. Am J Vet Res 41(2):215–218Google Scholar
  60. 60.
    Hirano N, Nomura R, Tawara T, Tohyama K (2004) Neurotropism of swine haemagglutinating encephalomyelitis virus (coronavirus) in mice depending upon host age and route of infection. J Comp Pathol 130(1):58–65Google Scholar
  61. 61.
    Weiss SR, Leibowitz JL (2011) Coronavirus pathogenesis. Advances in virus research, vol 81. Elsevier, Boston, pp 85–164Google Scholar
  62. 62.
    Brian DA, Baric RS (2005) Coronavirus genome structure and replication. Curr Top Microbiol Immunol 287:1–30Google Scholar
  63. 63.
    Arbour N, Day R, Newcombe J, Talbot PJ (2000) Neuroinvasion by human respiratory coronaviruses. J Virol 74(19):8913–8921Google Scholar
  64. 64.
    Arbour N, Cote G, Lachance C, Tardieu M, Cashman NR, Talbot PJ (1999) Acute and persistent infection of human neural cell lines by human coronavirus OC43. J Virol 73(4):3338–3350Google Scholar
  65. 65.
    Arbour N, Ekande S, Cote G, Lachance C, Chagnon F, Tardieu M, Cashman NR, Talbot PJ (1999) Persistent infection of human oligodendrocytic and neuroglial cell lines by human coronavirus 229E. J Virol 73(4):3326–3337Google Scholar
  66. 66.
    Bonavia A, Arbour N, Yong VW, Talbot PJ (1997) Infection of primary cultures of human neural cells by human coronaviruses 229E and OC43. J Virol 71(1):800–806Google Scholar
  67. 67.
    Xu J, Zhong S, Liu J, Li L, Li Y, Wu X, Li Z, Deng P, Zhang J, Zhong N, Ding Y, Jiang Y (2005) Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin Infect Dis 41(8):1089–1096. doi: 10.1086/444461 Google Scholar
  68. 68.
    Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, Zhan J, Wang S, Xie Z, Zhuang H, Wu B, Zhong H, Shao H, Fang W, Gao D, Pei F, Li X, He Z, Xu D, Shi X, Anderson VM, Leong AS (2005) Multiple organ infection and the pathogenesis of SARS. J Exp Med 202(3):415–424. doi: 10.1084/jem.20050828 Google Scholar
  69. 69.
    Talbot PJ, Jacomy H, Desforges M (2008) Pathogenesis of human coronaviruses other than severe acute respiratory syndrome coronavirus. In: Perlman S, Gallagher T, Snijder EJ (eds) Nidoviruses. ASM Press, Washington D.C, pp 313–324Google Scholar
  70. 70.
  71. 71.
    Jacomy H, Fragoso G, Almazan G, Mushynski WE, Talbot PJ (2006) Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology 349(2):335–346. doi: 10.1016/j.virol.2006.01.049 Google Scholar
  72. 72.
    Myint SH (1995) Human coronavirus infections. In: Siddell SG (ed) The coronaviridae. Plenum Press, New York, pp 389–401Google Scholar
  73. 73.
    Drosten C, Gunther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Eng J Med 348(20):1967–1976. doi: 10.1056/NEJMoa030747 Google Scholar
  74. 74.
    Fouchier RA, Kuiken T, Schutten M, van Amerongen G, van Doornum GJ, van den Hoogen BG, Peiris M, Lim W, Stohr K, Osterhaus AD (2003) Aetiology: Koch’s postulates fulfilled for SARS virus. Nature 423(6937):240. doi: 10.1038/423240a Google Scholar
  75. 75.
    van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, Wolthers KC, Wertheim-van Dillen PM, Kaandorp J, Spaargaren J, Berkhout B (2004) Identification of a new human coronavirus. Nat Med 10(4):368–373. doi: 10.1038/nm1024 Google Scholar
  76. 76.
    Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, Wong BH, Poon RW, Cai JJ, Luk WK, Poon LL, Wong SS, Guan Y, Peiris JS, Yuen KY (2005) Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 79(2):884–895. doi: 10.1128/JVI.79.2.884-895.2005 Google Scholar
  77. 77.
    Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820. doi: 10.1056/NEJMoa1211721 Google Scholar
  78. 78.
    Severance EG, Dickerson FB, Viscidi RP, Bossis I, Stallings CR, Origoni AE, Sullens A, Yolken RH (2011) Coronavirus immunoreactivity in individuals with a recent onset of psychotic symptoms. Schizophr Bull 37(1):101–107. doi: 10.1093/schbul/sbp052 Google Scholar
  79. 79.
    Fuk-Woo Chan J, Chan KH, Choi GK, To KK, Tse H, Cai JP, Yeung ML, Cheng VC, Chen H, Che XY, Lau SK, Woo PC, Yuen KY (2013) Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation. J Infect Dis 207(11):1743–1752. doi: 10.1093/infdis/jit123 Google Scholar
  80. 80.
    Berth SH, Leopold PL, Morfini GN (2009) Virus-induced neuronal dysfunction and degeneration. Front Biosci 14:5239–5259Google Scholar
  81. 81.
    Kim WK, Corey S, Alvarez X, Williams K (2003) Monocyte/macrophage traffic in HIV and SIV encephalitis. J Leukoc Biol 74(5):650–656. doi: 10.1189/jlb.0503207 Google Scholar
  82. 82.
    Argyris EG, Acheampong E, Wang F, Huang J, Chen K, Mukhtar M, Zhang H (2007) The interferon-induced expression of APOBEC3G in human blood–brain barrier exerts a potent intrinsic immunity to block HIV-1 entry to central nervous system. Virology 367(2):440–451. doi: 10.1016/j.virol.2007.06.010 Google Scholar
  83. 83.
    Desforges M, Miletti TC, Gagnon M, Talbot PJ (2007) Activation of human monocytes after infection by human coronavirus 229E. Virus Res 130(1–2):228–240. doi: 10.1016/j.virusres.2007.06.016 Google Scholar
  84. 84.
    Collins AR (2002) In vitro detection of apoptosis in monocytes/macrophages infected with human coronavirus. Clin Diagn Lab Immunol 9(6):1392–1395Google Scholar
  85. 85.
    Wentworth DE, Tresnan DB, Turner BC, Lerman IR, Bullis B, Hemmila EM, Levis R, Shapiro LH, Holmes KV (2005) Cells of human aminopeptidase N (CD13) transgenic mice are infected by human coronavirus-229E in vitro, but not in vivo. Virology 335(2):185–197. doi: 10.1016/j.virol.2005.02.023 Google Scholar
  86. 86.
    Nicholls JM, Butany J, Poon LL, Chan KH, Beh SL, Poutanen S, Peiris JS, Wong M (2006) Time course and cellular localization of SARS-CoV nucleoprotein and RNA in lungs from fatal cases of SARS. PLoS Med 3(2):e27. doi: 10.1371/journal.pmed.0030027 Google Scholar
  87. 87.
    Spiegel M, Schneider K, Weber F, Weidmann M, Hufert FT (2006) Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cells. J Gen Virol 87(Pt 7):1953–1960. doi: 10.1099/vir.0.81624-0 Google Scholar
  88. 88.
    Reuter JD, Gomez DL, Wilson JH, Van Den Pol AN (2004) Systemic immune deficiency necessary for cytomegalovirus invasion of the mature brain. J Virol 78(3):1473–1487Google Scholar
  89. 89.
    Lassnig C, Sanchez CM, Egerbacher M, Walter I, Majer S, Kolbe T, Pallares P, Enjuanes L, Muller M (2005) Development of a transgenic mouse model susceptible to human coronavirus 229E. Proc Nat Acad Sci U S A 102(23):8275–8280. doi: 10.1073/pnas.0408589102 Google Scholar
  90. 90.
    Guo Y, Korteweg C, McNutt MA, Gu J (2008) Pathogenetic mechanisms of severe acute respiratory syndrome. Virus Res 133(1):4–12. doi: 10.1016/j.virusres.2007.01.022 Google Scholar
  91. 91.
    Jacomy H, Talbot PJ (2003) Vacuolating encephalitis in mice infected by human coronavirus OC43. Virology 315(1):20–33Google Scholar
  92. 92.
    McCray PB Jr, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, Netland J, Jia HP, Halabi C, Sigmund CD, Meyerholz DK, Kirby P, Look DC, Perlman S (2007) Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 81(2):813–821. doi: 10.1128/JVI.02012-06 Google Scholar
  93. 93.
    Butler N, Pewe L, Trandem K, Perlman S (2006) Murine encephalitis caused by HCoV-OC43, a human coronavirus with broad species specificity, is partly immune-mediated. Virology 347(2):410–421. doi: 10.1016/j.virol.2005.11.044 Google Scholar
  94. 94.
    St-Jean JR, Jacomy H, Desforges M, Vabret A, Freymuth F, Talbot PJ (2004) Human respiratory coronavirus OC43: genetic stability and neuroinvasion. J Virol 78(16):8824–8834. doi: 10.1128/JVI.78.16.8824-8834.2004 Google Scholar
  95. 95.
    Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S (2008) Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 82(15):7264–7275. doi: 10.1128/JVI.00737-08 Google Scholar
  96. 96.
    Koch R (1942) The aetiology of tuberculosis (translation of Die Aetiologie der Tuberculose (1882). Dover Publications, New YorkGoogle Scholar
  97. 97.
    Fredericks DN, Relman DA (1996) Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin Microbiol Rev 9(1):18–33Google Scholar
  98. 98.
    Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58:295–300Google Scholar
  99. 99.
    Giovannoni G, Cutter GR, Lunemann J, Martin R, Munz C, Sriram S, Steiner I, Hammerschlag MR, Gaydos CA (2006) Infectious causes of multiple sclerosis. Lancet Neurol 5(10):887–894. doi: 10.1016/S1474-4422(06)70577-4 Google Scholar
  100. 100.
    Yeh EA, Collins A, Cohen ME, Duffner PK, Faden H (2004) Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics 113(1 Pt 1):e73–e76Google Scholar
  101. 101.
    Kurtzke JF (1993) Epidemiologic evidence for multiple sclerosis as an infection. Clin Microbiol Rev 6(4):382–427Google Scholar
  102. 102.
    Cusick MF, Libbey JE, Fujinami RS (2013) Multiple sclerosis: autoimmunity and viruses. Curr Opin Rheumatol 25(4):496–501. doi: 10.1097/BOR.0b013e328362004d Google Scholar
  103. 103.
    Kakalacheva K, Munz C (1812) Lunemann JD (2011) Viral triggers of multiple sclerosis. Biochim Biophys Acta 2:132–140. doi: 10.1016/j.bbadis.2010.06.012 Google Scholar
  104. 104.
    Gilden DH (2005) Infectious causes of multiple sclerosis. Lancet Neurol 4(3):195–202. doi: 10.1016/S1474-4422(05)01017-3 Google Scholar
  105. 105.
    Talbot PJ, Arnold D, Antel JP (2001) Virus-induced autoimmune reactions in the CNS. Curr Top Microbiol Immunol 253:247–271Google Scholar
  106. 106.
    Hovanec DL, Flanagan TD (1983) Detection of antibodies to human coronaviruses 229E and OC43 in the sera of multiple sclerosis patients and normal subjects. Infect Immun 41(1):426–429Google Scholar
  107. 107.
    Sibley WA, Bamford CR, Clark K (1985) Clinical viral infections and multiple sclerosis. Lancet 1(8441):1313–1315Google Scholar
  108. 108.
    Boucher A, Desforges M, Duquette P, Talbot PJ (2007) Long-term human coronavirus-myelin cross-reactive T-cell clones derived from multiple sclerosis patients. Clin Immunol 123(3):258–267. doi: 10.1016/j.clim.2007.02.002 Google Scholar
  109. 109.
    Talbot PJ, Paquette JS, Ciurli C, Antel JP, Ouellet F (1996) Myelin basic protein and human coronavirus 229E cross-reactive T-cells in multiple sclerosis. Ann Neurol 39(2):233–240. doi: 10.1002/ana.410390213 Google Scholar
  110. 110.
    Matthews AE, Weiss SR, Paterson Y (2002) Murine hepatitis virus—a model for virus-induced CNS demyelination. J Neurovirol 8(2):76–85. doi: 10.1080/13550280290049534 Google Scholar
  111. 111.
    Jacomy H, St-Jean JR, Brison E, Marceau G, Desforges M, Talbot PJ (2010) Mutations in the spike glycoprotein of human coronavirus OC43 modulate disease in BALB/c mice from encephalitis to flaccid paralysis and demyelination. J Neurovirol 16(4):279–293. doi: 10.3109/13550284.2010.497806 Google Scholar
  112. 112.
    St-Jean JR, Desforges M, Talbot PJ (2006) Genetic evolution of human coronavirus OC43 in neural cell culture. Adv Exp Med Biol 581:499–502. doi: 10.1007/978-0-387-33012-9_88 Google Scholar
  113. 113.
    Brison E, Jacomy H, Desforges M, Talbot PJ (2011) Glutamate excitotoxicity is involved in the induction of paralysis in mice after infection by a human coronavirus with a single point mutation in its spike protein. J Virol 85(23):12464–12473. doi: 10.1128/JVI.05576-11 Google Scholar
  114. 114.
    Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129(2):154–169. doi: 10.1111/j.1365-2567.2009.03225.x Google Scholar
  115. 115.
    Carmen J, Rothstein JD, Kerr DA (2009) Tumor necrosis factor-alpha modulates glutamate transport in the CNS and is a critical determinant of outcome from viral encephalomyelitis. Brain Res 1263:143–154. doi: 10.1016/j.brainres.2009.01.040 Google Scholar
  116. 116.
    Favreau DJ, Desforges M, St-Jean JR, Talbot PJ (2009) A human coronavirus OC43 variant harboring persistence-associated mutations in the S glycoprotein differentially induces the unfolded protein response in human neurons as compared to wild-type virus. Virology 395(2):255–267. doi: 10.1016/j.virol.2009.09.026 Google Scholar
  117. 117.
    Favreau DJ, Desforges M, Talbot PJ (2011) Human coronavirus-induced neuronal programmed cell death is cyclophilin D-dependent and potentially caspase-dispensable. J Virol 86(1):81–93. doi: 10.1128/JVI.06062-11 Google Scholar
  118. 118.
    Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death. Cell Death Differ 19(1):107–120. doi: 10.1038/cdd.2011.96 Google Scholar
  119. 119.
    Kaiser WJ, Upton JW, Mocarski ES (2013) Viral modulation of programmed necrosis. Curr Opin Virol. doi: 10.1016/j.coviro.2013.05.019 Google Scholar
  120. 120.
    Cali T, Ottolini D, Brini M (2011) Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson’s disease. BioFactors 37(3):228–240. doi: 10.1002/biof.159 Google Scholar
  121. 121.
    Bender SJ, Weiss SR (2010) Pathogenesis of murine coronavirus in the central nervous system. J Neuroimmune Pharmacol 5(3):336–354. doi: 10.1007/s11481-010-9202-2 Google Scholar
  122. 122.
    Hosking MP, Lane TE (2010) The pathogenesis of murine coronavirus infection of the central nervous system. Crit Rev Immunol 30(2):119–130Google Scholar
  123. 123.
    Desforges M, Desjardins J, Zhang C, Talbot PJ (2013) The acetyl-esterase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious virus. J Virol 87(6):3097–3107. doi: 10.1128/JVI.02699-1 Google Scholar
  124. 124.
    Kazi L, Lissenberg A, Watson R, de Groot RJ, Weiss SR (2005) Expression of hemagglutinin esterase protein from recombinant mouse hepatitis virus enhances neurovirulence. J Virol 79(24):15064–15073. doi: 10.1128/JVI.79.24.15064-15073.2005 Google Scholar
  125. 125.
    Tseng CT, Huang C, Newman P, Wang N, Narayanan K, Watts DM, Makino S, Packard MM, Zaki SR, Chan TS, Peters CJ (2007) Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human Angiotensin-converting enzyme 2 virus receptor. J Virol 81(3):1162–1173. doi: 10.1128/JVI.01702-06 Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Marc Desforges
    • 1
    Email author
  • Alain Le Coupanec
    • 1
  • Élodie Brison
    • 1
  • Mathieu Meessen-Pinard
    • 1
  • Pierre J. Talbot
    • 1
  1. 1.Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifiqueUniversité du QuébecLavalCanada

Personalised recommendations