Nanobiosensors: Role in Cancer Detection and Diagnosis

  • Andrew Gdowski
  • Amalendu P. Ranjan
  • Anindita Mukerjee
  • Jamboor K. VishwanathaEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 807)


The ability to detect many cancers at an early stage in its clinical course has the potential to improve patient outcomes in terms of morbidity and mortality. Nanosized components incorporated into existing clinical diagnostic and detection systems as well as novel nanobiosensors have demonstrated improved sensitivity and specificity compared with traditional cancer testing approaches. Nanoparticles, nanowires, nanotubes, and nanocantilevers are examples of four nanobiosensor systems that have been used experimentally in the context of detection and diagnosis of prostate, breast, pancreatic, lung, and brain cancers over the past few years. Nanobiosensors will begin to transition into clinically validated tests as experimental and engineering techniques advance. This paper presents examples of some such nanobiosensors for cancer diagnosis and detection.


Nanobiosensors Cancer detection and diagnosis 


  1. 1.
    Hu DH, Gong P, Ma YF, Cai LT (2009) Research advancement and prospects of nanotechnology in early diagnosis and treatment of cancer. Ai Zheng 28(9):1000–1003Google Scholar
  2. 2.
    Cancer facts & figures (2012) Atlanta: American cancer societyGoogle Scholar
  3. 3.
    Bohunicky B, Mousa S (2011) Biosensors: the new wave in cancer diagnosis nanotechnology. Sci Appl 4:1–10Google Scholar
  4. 4.
    LaRocque J, Bharali DJ, Mousa SA (2009) Cancer detection and treatment: the role of nanomedicines. Mol Biotechnol 42(3):358–366Google Scholar
  5. 5.
    Jain K (2010) A handbook of biomarkers. Springer, New YorkGoogle Scholar
  6. 6.
    Kissinger PT (2005) Biosensors-a perspective. Biosens Bioelectron 20(12):2512–2516Google Scholar
  7. 7.
    Osuwa J, Anusionwu P (2011) Some advances and prospects in nanotechnology: a review. Asian J Inf Technol 10:96–100Google Scholar
  8. 8.
    Shi J, Xiao Z, Kamaly N, Farokhzad OC (2011) Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res 44(10):1123–1134Google Scholar
  9. 9.
    Cuenca AG, Jiang H, Hochwald SN, Delano M, Cance WG, Grobmyer SR (2006) Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107(3):459–466Google Scholar
  10. 10.
    Seydel C (2003) Quantum dots get wet. Science 300(5616):80–81Google Scholar
  11. 11.
    Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A 99(20):12617–12621Google Scholar
  12. 12.
    Zrazhevskiy P, Sena M, Gao X (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39(11):4326–4354Google Scholar
  13. 13.
    Morgan NY, English S, Chen W, Chernomordik V, Russo A, Smith PD et al (2005) Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots. Acad Radiol 12(3):313–323Google Scholar
  14. 14.
    Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16(1):63–72Google Scholar
  15. 15.
    Raffa V, Vittorio O, Riggio C, Cuschieri A (2010) Progress in nanotechnology for healthcare. Minim Invasive Ther Allied Technol 19(3):127–135Google Scholar
  16. 16.
    Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175(2):489–493Google Scholar
  17. 17.
    Artemov D, Mori N, Okollie B, Bhujwalla ZM (2003) MR molecular imaging of the her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn Reson Med 49(3):403–408Google Scholar
  18. 18.
    Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM (2001) Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 7(11):1241–1244Google Scholar
  19. 19.
    Alexiou C, Jurgons R, Schmid R, Erhardt W, Parak F, Bergemann C et al (2005) Magnetic drug targeting–a new approach in locoregional tumor therapy with chemotherapeutic agents. Experimental animal studies. HNO 53(7):618–622Google Scholar
  20. 20.
    Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N et al (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–40Google Scholar
  21. 21.
    Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T et al (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436(7050):568–572Google Scholar
  22. 22.
    Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711Google Scholar
  23. 23.
    Liu H, Liu T, Wang H, Li L, Tan L, Fu C et al (2013) Impact of PEGylation on the biological effects and light heat conversion efficiency of gold nanoshells on silica nanorattles. Biomaterials 34(28):6967–6975Google Scholar
  24. 24.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100(23):13549–13554Google Scholar
  25. 25.
    O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176Google Scholar
  26. 26.
    Bao G, Mitragotri S, Tong S (2013) Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 11(15):253–282Google Scholar
  27. 27.
    Boyer D, Tamarat P, Maali A, Lounis B, Orrit M (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297(5584):1160–1163Google Scholar
  28. 28.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248Google Scholar
  29. 29.
    Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R et al (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63(9):1999–2004Google Scholar
  30. 30.
    Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE et al (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11(3):169–183Google Scholar
  31. 31.
    Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC et al (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73(8):2412–2417Google Scholar
  32. 32.
    Wang X, Yang L, Chen ZG, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58(2):97–110Google Scholar
  33. 33.
    Lee SK, Kim GS, Wu Y, Kim DJ, Lu Y, Kwak M et al (2012) Nanowire substrate-based laser scanning cytometry for quantitation of circulating tumor cells. Nano Lett 12(6):2697–2704Google Scholar
  34. 34.
    Zhang GJ, Ning Y (2012) Silicon nanowire biosensor and its applications in disease diagnostics: a review. Anal Chim Acta 24(749):1–15Google Scholar
  35. 35.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58Google Scholar
  36. 36.
    Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv Mater 19(20):3214–3228Google Scholar
  37. 37.
    Kierny MR, Cunningham TD, Kay BK (2012) Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms. Nano Rev 3. doi:  10.3402/nano.v3i0.17240. Epub 2012 Jul 23
  38. 38.
    Gupta AK, Nair PR, Akin D, Ladisch MR, Broyles S, Alam MA et al (2006) Anomalous resonance in a nanomechanical biosensor. Proc Natl Acad Sci U S A 103(36):13362–13367Google Scholar
  39. 39.
    Jain KK (2007) Applications of nanobiotechnology in clinical diagnostics. Clin Chem 53(11):2002–2009Google Scholar
  40. 40.
    Sanna V, Sechi M (2012) Nanoparticle therapeutics for prostate cancer treatment. Maturitas 73(1):27–32Google Scholar
  41. 41.
    Rao AR, Motiwala HG, Karim OM (2008) The discovery of prostate-specific antigen. BJU Int. 101(1):5–10Google Scholar
  42. 42.
    Charatan F (1994) FDA approves test for prostatic cancer. BMJ 309:628Google Scholar
  43. 43.
    U.S. Preventive Services (2012) Task Force Recommendation Statement. Screening for prostate cancerGoogle Scholar
  44. 44.
    Hill HD, Mirkin CA (2006) The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat Protoc 1(1):324–336Google Scholar
  45. 45.
    Thaxton CS, Elghanian R, Thomas AD, Stoeva SI, Lee JS, Smith ND et al (2009) Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc Natl Acad Sci U S A 106(44):18437–18442Google Scholar
  46. 46.
    Jaffrezic-Renault N, Martelet C, Chevolot Y, J- Cloarec (2007) Biosensors and bio-bar code assays based on biofunctionalized magnetic microbeads. Sensors 7:589–614Google Scholar
  47. 47.
    Viator JA, Gupta S, Goldschmidt BS, Bhattacharyyal K, Kannan R, Shukla R et al (2010) Gold nanoparticle mediated detection of prostate cancer cells using photoacoustic flowmetry with optical reflectance. J Biomed Nanotechnol 6(2):187–191Google Scholar
  48. 48.
    Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499Google Scholar
  49. 49.
    Janib SM, Moses AS, MacKay JA (2010) Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 62(11):1052–1063Google Scholar
  50. 50.
    Kim A, Ah C, Yu H, Yang J, Baek I, Ahn C et al (2007) Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl Phy Lett 91(10):103901–103903Google Scholar
  51. 51.
    Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23(10):1294–1301Google Scholar
  52. 52.
    Stern E, Vacic A, Rajan NK, Criscione JM, Park J, Ilic BR et al (2010) Label-free biomarker detection from whole blood. Nat Nanotechnol 5(2):138–142Google Scholar
  53. 53.
    Malhotra R, Papadimitrakopoulos F, Rusling JF (2010) Sequential layer analysis of protein immunosensors based on single wall carbon nanotube forests. Langmuir 26(18):15050–15056Google Scholar
  54. 54.
    Chikkaveeraiah BV, Bhirde A, Malhotra R, Patel V, Gutkind JS, Rusling JF (2009) Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal Chem 81(21):9129–9134Google Scholar
  55. 55.
    Lee JH, Hwang KS, Park J, Yoon KH, Yoon DS, Kim TS (2005) Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosens Bioelectron 20(10):2157–2162Google Scholar
  56. 56.
    Hwang KS, Lee JH, Park J, Yoon DS, Park JH, Kim TS (2004) In-situ quantitative analysis of a prostate-specific antigen (PSA) using a nanomechanical PZT cantilever. Lab Chip 4(6):547–552Google Scholar
  57. 57.
    DeSantis C, Siegel R, Bandi P, Jemal A (2011) Breast cancer statistics. CA Cancer J Clin 61(6):409–418Google Scholar
  58. 58.
    Grobmyer SR, Morse DL, Fletcher B, Gutwein LG, Sharma P, Krishna V et al (2011) The promise of nanotechnology for solving clinical problems in breast cancer. J Surg Oncol 103(4):317–325Google Scholar
  59. 59.
    Colombo M, Corsi F, Foschi D, Mazzantini E, Mazzucchelli S, Morasso C et al (2010) HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: Outlook and recent implications in nanomedical approaches. Pharmacol Res 62(2):150–165Google Scholar
  60. 60.
    Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1):41–46Google Scholar
  61. 61.
    Chen C, Peng J, Xia HS, Yang GF, Wu QS, Chen LD et al (2009) Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials 30(15):2912–2918Google Scholar
  62. 62.
    Rossi LM, Shi L, Rosenzweig N, Rosenzweig Z (2006) Fluorescent silica nanospheres for digital counting bioassay of the breast cancer marker HER2/neu [correction of HER2/nue. Biosens Bioelectron 21(10):1900–1906Google Scholar
  63. 63.
    Leuschner C, Kumar CS, Hansel W, Soboyejo W, Zhou J, Hormes J (2006) LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Res Treat 99(2):163–176Google Scholar
  64. 64.
    Yang L, Peng XH, Wang YA, Wang X, Cao Z, Ni C et al (2009) Receptor-targeted nanoparticles for in vivo imaging of breast cancer. Clin Cancer Res 15(14):4722–4732Google Scholar
  65. 65.
    Copland JA, Eghtedari M, Popov VL, Kotov N, Mamedova N, Motamedi M et al (2004) Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. Mol Imaging Biol 6(5):341–349Google Scholar
  66. 66.
    Sakamoto JH, Smith BR, Xie B, Rokhlin SI, Lee SC, Ferrari M (2005) The molecular analysis of breast cancer utilizing targeted nanoparticle based ultrasound contrast agents. Technol Cancer Res Treat. 4(6):627–636Google Scholar
  67. 67.
    Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99(14):1095–1106Google Scholar
  68. 68.
    Prost AC, Menegaux F, Langlois P, Vidal JM, Koulibaly M, Jost JL et al (1998) Differential transferrin receptor density in human colorectal cancer: A potential probe for diagnosis and therapy. Int J Oncol 13(4):871–875Google Scholar
  69. 69.
    Li JL, Wang L, Liu XY, Zhang ZP, Guo HC, Liu WM et al (2009) In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett 274(2):319–326Google Scholar
  70. 70.
    Lowery AR, Gobin AM, Day ES, Halas NJ, West JL (2006) Immunonanoshells for targeted photothermal ablation of tumor cells. Int J Nanomed 1(2):149–154Google Scholar
  71. 71.
    Rockall AG, Sohaib SA, Harisinghani MG, Babar SA, Singh N, Jeyarajah AR et al (2005) Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer. J Clin Oncol 23(12):2813–2821Google Scholar
  72. 72.
    Jakub JW, Pendas S, Reintgen DS (2003) Current status of sentinel lymph node mapping and biopsy: facts and controversies. Oncologist 8(1):59–68Google Scholar
  73. 73.
    Chen SL, Iddings DM, Scheri RP, Bilchik AJ (2006) Lymphatic mapping and sentinel node analysis: current concepts and applications. CA Cancer J Clin 56(5):292–309; quiz 316-7Google Scholar
  74. 74.
    Khullar O, Frangioni JV, Grinstaff M, Colson YL (2009) Image-guided sentinel lymph node mapping and nanotechnology-based nodal treatment in lung cancer using invisible near-infrared fluorescent light. Semin Thorac Cardiovasc Surg 21(4):309–315Google Scholar
  75. 75.
    Hama Y, Koyama Y, Urano Y, Choyke PL, Kobayashi H (2007) Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity. Breast Cancer Res Treat 103(1):23–28Google Scholar
  76. 76.
    Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JA, Waggoner AS et al (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 18(2):389–396Google Scholar
  77. 77.
    Takeda M, Tada H, Higuchi H, Kobayashi Y, Kobayashi M, Sakurai Y et al (2008) In vivo single molecular imaging and sentinel node navigation by nanotechnology for molecular targeting drug-delivery systems and tailor-made medicine. Breast Cancer 15(2):145–152Google Scholar
  78. 78.
    Robe A, Pic E, Lassalle HP, Bezdetnaya L, Guillemin F, Marchal F (2008) Quantum dots in axillary lymph node mapping: biodistribution study in healthy mice. BMC Cancer 8:111. doi:  10.1186/1471-2407-8-111 Google Scholar
  79. 79.
    Song KH, Kim C, Cobley CM, Xia Y, Wang LV (2009) Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. Nano Lett 9(1):183–188Google Scholar
  80. 80.
    Snyder EL, Bailey D, Shipitsin M, Polyak K, Loda M (2009) Identification of CD44v6(+)/CD24- breast carcinoma cells in primary human tumors by quantum dot-conjugated antibodies. Lab Invest 89(8):857–866Google Scholar
  81. 81.
    Talanov VS, Regino CA, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW (2006) Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett 6(7):1459–1463Google Scholar
  82. 82.
    Koyama Y, Talanov VS, Bernardo M, Hama Y, Regino CA, Brechbiel MW et al (2007) A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice. J Magn Reson Imaging 25(4):866–871Google Scholar
  83. 83.
    Lee H, Yoon TJ, Figueiredo JL, Swirski FK, Weissleder R (2009) Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc Natl Acad Sci USA. 106(30):12459–12464Google Scholar
  84. 84.
    Ali S, Coombes RC (2000) Estrogen receptor alpha in human breast cancer: Occurrence and significance. J Mammary Gland Biol Neoplasia 5(3):271–281Google Scholar
  85. 85.
    Patolsky F, Zheng G, Lieber CM (2006) Nanowire-based biosensors. Anal Chem 78(13):4260–4269Google Scholar
  86. 86.
    Shao N, Wickstrom E, Panchapakesan B (2008) Nanotube-antibody biosensor arrays for the detection of circulating breast cancer cells. Nanotechnology 19(46):465101. doi:  10.1088/0957-4484/19/46/465101. Epub 2008 Oct 21Google Scholar
  87. 87.
    Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X et al (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660Google Scholar
  88. 88.
    Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ (2008) Targeted single-wall carbon nanotube-mediated pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc 130(34):11467–11476Google Scholar
  89. 89.
    Chen H, Han J, Li J, Meyyappan M (2004) Microelectronic DNA assay for the detection of BRCA1 gene mutations. Biomed Microdevices 6(1):55–60Google Scholar
  90. 90.
    Yang F, Jin C, Subedi S, Lee CL, Wang Q, Jiang Y et al (2012) Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment. Cancer Treat Rev 38(6):566–579Google Scholar
  91. 91.
    Baxter NN, Whitson BA, Tuttle TM (2007) Trends in the treatment and outcome of pancreatic cancer in the United States. Ann Surg Oncol 14(4):1320–1326Google Scholar
  92. 92.
    Kumagai M, Kano MR, Morishita Y, Ota M, Imai Y, Nishiyama N et al (2009) Enhanced magnetic resonance imaging of experimental pancreatic tumor in vivo by block copolymer-coated magnetite nanoparticles with TGF-beta inhibitor. J Control Release 140(3):306–311Google Scholar
  93. 93.
    Yang L, Mao H, Cao Z, Wang YA, Peng X, Wang X et al (2009) Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology 136(5):1514–1525.e2Google Scholar
  94. 94.
    Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE et al (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896Google Scholar
  95. 95.
    Yang L, Mao H, Wang YA, Cao Z, Peng X, Wang X et al (2009) Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small 5(2):235–243Google Scholar
  96. 96.
    Gu B, Xu C, Yang C, Liu S, Wang M (2011) ZnO quantum dot labeled immunosensor for carbohydrate antigen 19–9. Biosens Bioelectron 26(5):2720–2723Google Scholar
  97. 97.
    Kumar R, Roy I, Ohulchanskyy TY, Goswami LN, Bonoiu AC, Bergey EJ et al (2008) Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2(3):449–456Google Scholar
  98. 98.
    Vivero-Escoto JL, Taylor-Pashow KM, Huxford RC, Della Rocca J, Okoruwa C, An H et al (2011) Multifunctional mesoporous silica nanospheres with cleavable gd(III) chelates as MRI contrast agents: synthesis, characterization, target-specificity, and renal clearance. Small 7(24):3519–3528Google Scholar
  99. 99.
    Yong KT, Ding H, Roy I, Law WC, Bergey EJ, Maitra A et al (2009) Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3(3):502–510Google Scholar
  100. 100.
    Ding H, Yong KT, Law WC, Roy I, Hu R, Wu F et al (2011) Non-invasive tumor detection in small animals using novel functional pluronic nanomicelles conjugated with anti-mesothelin antibody. Nanoscale 3(4):1813–1822Google Scholar
  101. 101.
    Zaman MB, Baral TN, Jakubek ZJ, Zhang J, Wu X, Lai E et al (2011) Single-domain antibody bioconjugated near-IR quantum dots for targeted cellular imaging of pancreatic cancer. J Nanosci Nanotechnol 11(5):3757–3763Google Scholar
  102. 102.
    Law WC, Yong KT, Roy I, Ding H, Hu R, Zhao W et al (2009) Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 5(11):1302–1310Google Scholar
  103. 103.
    Qian J, Yong KT, Roy I, Ohulchanskyy TY, Bergey EJ, Lee HH et al (2007) Imaging pancreatic cancer using surface-functionalized quantum dots. J Phys Chem B 111(25):6969–6972Google Scholar
  104. 104.
    Yong KT (2009) Mn-doped near-infrared quantum dots as multimodal targeted probes for pancreatic cancer imaging. Nanotechnology 20(1):015102. doi:  10.1088/0957-4484/20/1/015102. Epub 2008 Dec 5Google Scholar
  105. 105.
    Erogbogbo F, Tien CA, Chang CW, Yong KT, Law WC, Ding H et al (2011) Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjug Chem. 22(6):1081–1088Google Scholar
  106. 106.
    Chang SQ, Dai YD, Kang B, Han W, Chen D (2009) Gamma-radiation synthesis of silk fibroin coated CdSe quantum dots and their biocompatibility and photostability in living cells. J Nanosci Nanotechnol 9(10):5693–5700Google Scholar
  107. 107.
    Yong KT (2010) Biophotonics and biotechnology in pancreatic cancer: cyclic RGD-peptide-conjugated type II quantum dots for in vivo imaging. Pancreatology 10(5):553–564Google Scholar
  108. 108.
    Yanez-Sedeno P, Pingarron JM (2005) Gold nanoparticle-based electrochemical biosensors. Anal Bioanal Chem 382(4):884–886Google Scholar
  109. 109.
    Khan JA, Kudgus RA, Szabolcs A, Dutta S, Wang E, Cao S et al (2011) Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo. PLoS ONE 6(6):e20347Google Scholar
  110. 110.
    Eck W, Craig G, Sigdel A, Ritter G, Old LJ, Tang L et al (2008) PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS Nano 2(11):2263–2272Google Scholar
  111. 111.
    Hu R, Yong KT, Roy I, Ding H, He S, Prasad PN (2009) Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark field targeted imaging of cancer cells. J Phys Chem C Nanomater Interfaces 113(7):2676–2684Google Scholar
  112. 112.
    Montet X, Weissleder R, Josephson L (2006) Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem 17(4):905–911Google Scholar
  113. 113.
    Zhuo Y, Yuan R, Chai YQ, Hong CL (2010) Functionalized SiO2 labeled CA19-9 antibodies: a new strategy for signal amplification of antigen-antibody sensing processes. Analyst 135(8):2036–2042Google Scholar
  114. 114.
    Liu Q, Liu A, Gao F, Weng S, Zhong G, Liu J et al (2011) Coupling technique of random amplified polymorphic DNA and nanoelectrochemical sensor for mapping pancreatic cancer genetic fingerprint. Int J Nanomedicine 6:2933–2939Google Scholar
  115. 115.
    Sienel W, Dango S, Ehrhardt P, Eggeling S, Kirschbaum A, Passlick B (2006) The future in diagnosis and staging of lung cancer. Molecular techniques. Respiration 73(5):575–580Google Scholar
  116. 116.
    Barash O, Peled N, Tisch U, Bunn PA Jr, Hirsch FR, Haick H (2012) Classification of lung cancer histology by gold nanoparticle sensors. Nanomedicine 8(5):580–589Google Scholar
  117. 117.
    Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A et al (2010) Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer 103(4):542–551Google Scholar
  118. 118.
    Gordon SM, Szidon JP, Krotoszynski BK, Gibbons RD, O’Neill HJ (1985) Volatile organic compounds in exhaled air from patients with lung cancer. Clin Chem 31(8):1278–1282Google Scholar
  119. 119.
    Ramgir N, Zajac A, Sekhar P, Lee L, Zhukov T, Bhansali S (2007) Voltammetric detection of cancer biomarkers exemplified by interleukin-10 and osteopontin with silica. J Phys Chem C 111:13981–13987Google Scholar
  120. 120.
    Peng G, Trock E, Haick H (2008) Detecting simulated patterns of lung cancer biomarkers by random network of single-walled carbon nanotubes coated with nonpolymeric organic materials. Nano Lett 8(11):3631–3635Google Scholar
  121. 121.
    Paul SP, Debono R, Walker D (2013) Clinical update: recognising brain tumours early in children. Community Pract 86(4):42–45Google Scholar
  122. 122.
    Bradbury M, Begley D, Kreuter J (2000) The blood-brain barrier and drug delivery to the CNS. Informa healthcare, MontgomeryGoogle Scholar
  123. 123.
    Meyers JD, Doane T, Burda C, Basilion JP (2013) Nanoparticles for imaging and treating brain cancer. Nanomedicine 8(1):123–143Google Scholar
  124. 124.
    Reddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE et al (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12(22):6677–6686Google Scholar
  125. 125.
    Dilnawaz F, Singh A, Mewar S, Sharma U, Jagannathan NR, Sahoo SK (2012) The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials 33(10):2936–2951Google Scholar
  126. 126.
    Hua MY, Liu HL, Yang HW, Chen PY, Tsai RY, Huang CY et al (2011) The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials 32(2):516–527Google Scholar
  127. 127.
    Kievit FM, Veiseh O, Fang C, Bhattarai N, Lee D, Ellenbogen RG et al (2010) Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano 4(8):4587–4594Google Scholar
  128. 128.
    Bhaskar S, Tian F, Stoeger T, Kreyling W, de la Fuente JM, Grazu V et al (2010) Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol 7:3. doi:  10.1186/1743-8977-7-3
  129. 129.
    Achilefu S, Dorshow RB, Bugaj JE, Rajagopalan R (2000) Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest Radiol 35(8):479–485Google Scholar
  130. 130.
    Llinás R, Walton K, Nakao M, Hunter I, Anquetil P (2005) Neuro-vascular central nervous recording/stimulating system: using nanotechnology probes. J Nanopart Res 7(2–3):111–127Google Scholar
  131. 131.
    Elder JB, Liu CY, Apuzzo ML (2008) Neurosurgery in the realm of 10(-9), part 2: applications of nanotechnology to neurosurgery–present and future. Neurosurgery 62(2):269–284. discussion 284-5Google Scholar
  132. 132.
    Liu HL, Hua MY, Yang HW, Huang CY, Chu PC, Wu JS et al (2010) Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci U S A 107(34):15205–15210Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Andrew Gdowski
    • 1
    • 3
  • Amalendu P. Ranjan
    • 1
    • 2
  • Anindita Mukerjee
    • 1
    • 2
  • Jamboor K. Vishwanatha
    • 1
    • 2
    Email author
  1. 1.Department of Molecular Biology and ImmunologyGraduate School of Biomedical Sciences, University of North Texas Health Science CenterFort WorthUSA
  2. 2.Institute for Cancer ResearchGraduate School of Biomedical Sciences, University of North Texas Health Science CenterFort WorthUSA
  3. 3.Texas College of Osteopathic MedicineGraduate School of Biomedical Sciences, University of North Texas Health Science CenterFort WorthUSA

Personalised recommendations