Immunological Markers that Correlate with Protection Immunity Against Tularemia Infection

  • Victoria V. FirstovaEmail author
  • Alexander N. Mokrievich
  • Vitalii M. Pavlov
  • Aleksey A. Gorbatov
  • Tatiana I. Kombarova
  • Sergey F. Biketov
  • Ivan A. Dyatlov
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 808)


An efficient immune response to tularemia is dependent on a strong cell-mediated component. We tried to identify markers of cellular immune responses that indicate a vaccine efficacy against tularemia. BALB/c mice were immunized with mutant F. tularensis 15∆23A and/or F. tularensis 15 NIIEG strains and then were challenged i.n. with F. tularensis Schu. We compared the influence of F. tularensis antigens (tularinum) in vitro on production of IL-1, IL-5, IL-6, IL-17, IFN-γ, and TNF-α by splenocytes obtained from intact mice and mice immunized with mutant F. tularensis 15∆23A and/or F. tularensis 15 NIIEG strains. We also compared expression of CD28, CD154, TLR-2, and CD69 markers on CD4 and CD8 T-cells after activation with tularinum in vitro. We found that tularinum-induced CD4+ T-cells increased TNF-α and IFN-γ synthesis and expression of CD69 only in group mice with high degree of post immunization protection against F. tularensis Schu challenge. Estimation of CD69 expression on CD3+CD4+ cells and IFN-γ, TNF-α synthesis by CD4+ T-lymphocytes could be useful for determination protect ability of antitularemia immunity.


Tularemia Cell immunity Lymphocyte CD69 IFN-γ TNF-α 


  1. 1.
    Eneslätt K, Rietz C, Ryden P, Stöven S, House RV, Wolfraim LA, Tärnvik A, Sjöstedt A (2011) Persistence of cell-mediated immunity three decades after vaccination with the live vaccine strain of Francisella tularensis. Eur J Immunol 41:974–980CrossRefGoogle Scholar
  2. 2.
    Syrjälä H, Herva E, Ilonen J, Saukkonen K, Salminen A (1984) A whole-blood lymphocyte stimulation test for the diagnosis of human tularemia. J Infect Dis 150:912–915CrossRefGoogle Scholar
  3. 3.
    Millington KA, Innes JA, Hackforth S, Hinks TS, Deeks JJ et al (2007) Dynamic relationship between IFN-gamma and IL-2 profile of mycobacterium tuberculosis-specific T cells and antigen load. J Immunol 178:5217–5226Google Scholar
  4. 4.
    Winkler S, Necek M, Winkler H, Adegnika AA, Perkmann T et al (2005) Increased specific T cell cytokine responses in patients with active pulmonary tuberculosis from Central Africa. Microbes Infect 7:1161–1169CrossRefGoogle Scholar
  5. 5.
    Seder RA, Darrah PA, Roederer M (2008) T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8:247–258CrossRefGoogle Scholar
  6. 6.
    Eliasson H, Per Olceñ, Sjöstedt A, Jurstrand M, Bäck E, Andersson S (2008) Kinetics of the Immune response associated with Tularemia: comparison of an enzyme-linked immunosorbent assay, a tube agglutination test, and a novel whole-blood lymphocyte stimulation test. Clin vaccine immunol 15(8):1238–1243Google Scholar
  7. 7.
    Testi R, D’Ambrosio D, De Maria R, Santoni A (1994) The CD69 receptor: a multipurpose cell-surface trigger for hematopoietic cells. Immunol Today 15:479–483CrossRefGoogle Scholar
  8. 8.
    Ziegler SF, Ramsdell F, Alderson MR (1994) The activation antigen CD69. Stem Cells 12:456–465CrossRefGoogle Scholar
  9. 9.
    Linsley PS, Ledbetter JA (1993) The role of CD28 receptor during T-cell responses to antigen. Annu Rev Immunol 11:191–212CrossRefGoogle Scholar
  10. 10.
    Xu Y, Song G (2004) The role of CD40-CD154 interaction in cell immunoregulation. J Biomed Sci 11(4):426–438CrossRefGoogle Scholar
  11. 11.
    Hong KJ, Park PG, Seo SH, Rhie GE, Hwang KJ (2013) Current status of vaccine development for tularemia preparedness. Clin Exp Vaccine Res 2(1):34–39Google Scholar
  12. 12.
    Sjöstedt A, Eriksson M, Sandström G, Tärnvik A (1992) Various membrane proteins of Francisella tularensis induce interferon-gamma production in both CD4 + and CD8 + T cells of primed humans. Immunology 76:584–592Google Scholar
  13. 13.
    Cowley S, Elkins K (2011) Immunity to Francisella. Front Microbiol 2:26CrossRefGoogle Scholar
  14. 14.
    Onishi RM, Gaffen SL (2010) Interleukine-17 and its target genes: mechanisms of IL-17 function in disease. Immunology 129:311–321Google Scholar
  15. 15.
    Katz J, Zhang P, Martin M, Vogel SN, Michalek SM (2006) Toll-like receptor 2 is required for inflammatory responses to Francisella tularensis LVS. Infect Immun 74(5):2809–2816CrossRefGoogle Scholar
  16. 16.
    Ziegler SF et al (1993) Molecular characterization of the early activation antigen CD69: a type II membrane glycoprotein related to a family of natural killer cell activation antigens. Eur J Immunol 23:1643–1648CrossRefGoogle Scholar
  17. 17.
    Yamashita I, Nagata T, Tada T, Nakayama T (1993) CD69 cell surface expression identifies developing thymocytes which audition for T cell antigen receptor-mediated positive selection. Int Immunol 5:1139–1150Google Scholar
  18. 18.
    Shinoda K, Tokoyodaa K, Hanazawaa A, Hayashizakia K, Zehentmeier S, Hosokawaa H, Iwamura C, Koseki H, Tumesa DJ, Radbruch A, Nakayama T (2012) Type II membrane protein CD69 regulates the formation of resting T-helper memory Proc Natl Acad Sci USA 8. 109(19):7409–14Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Victoria V. Firstova
    • 1
    Email author
  • Alexander N. Mokrievich
    • 1
  • Vitalii M. Pavlov
    • 1
  • Aleksey A. Gorbatov
    • 1
  • Tatiana I. Kombarova
    • 1
  • Sergey F. Biketov
    • 1
  • Ivan A. Dyatlov
    • 1
  1. 1.State Research Center for Applied Microbiology and BiotechnologyMoscowRussia

Personalised recommendations