Skip to main content

A LabVIEW Based Data Acquisition System for Electrical Impedance Tomography (EIT)

  • Conference paper
  • First Online:
Proceedings of the Third International Conference on Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 259))

Abstract

A LabVIEW based data acquisition system (LV-DAS) is developed for Electrical Impedance Tomography (EIT) for automatic current injection and boundary data collection. The developed LV-DAS consists of a NIUSB-6251 DAQ card, NISCB-68 connector module and an automatic electrode switching module (A-ESM). A LabVIEW based graphical user interface (LV-GUI) is develop to control the current injection and data acquisition by LV-DAS through A-ESM. Boundary data are collected for a number of practical phantoms and the boundary data profiles are studied to assess the LV-DAS. Results show that the high resolution NIDAQ card of the DAS improves its data acquisition performance with accurate measurement and high signal to noise ratio (SNR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Webster, J.G.: Electrical Impedance Tomography. Adam Hilger Series of Biomedical Engineering, Adam Hilger, New York (1990)

    Google Scholar 

  2. Bera, T.K., Nagaraju, J.: Electrical Impedance Tomography (EIT): A Harmless Medical Imaging Modality. Research Developments in Computer Vision and Image Processing: Methodologies and Applications, Chap. 13, pp. 224–262. IGI Global, USA (2013)

    Google Scholar 

  3. Wanga, P., Guo, B., Li, N.: Multi-index optimization design for electrical resistance tomography sensor. Measurement 46, 2845–2853 (2013)

    Article  Google Scholar 

  4. Bera, T.K., Nagaraju, J.: Studies on the thin film based flexible gold electrode arrays for resistivity imaging in electrical impedance tomography. Measurement. 47, 264–286 (2014). Impact Factor: 1.130

    Google Scholar 

  5. Holder, D.S.: Electrical Impedance Tomography: Methods, History and Applications, 1st edn. Institute of Physics Publishing Ltd., UK (2005)

    Google Scholar 

  6. Bera, T.K., Nagaraju, J.: A MATLAB based boundary data simulator for studying the resistivity reconstruction using neighbouring current pattern. J. Med. Eng. 15 (2013) (Article ID 193578)

    Google Scholar 

  7. Bera, T.K., Nagaraju, J.: Elemental resistivity profile analysis of EIT images to assess the reconstructed image quality. Int. J. Inf. Process. 7(1), 1–14 (2013)

    Google Scholar 

  8. Bushberg, J.T., Seibert, J.A., Leidholdt Jr., E.M., Boone, J.M.: The Essential Physics of Medical Imaging, 3rd edition. Lippincott Williams & Wilkins; Third, North American Edition edition (20 Dec 2011)

    Google Scholar 

  9. Hiller, J., Reindl, L.M.: A computer simulation platform for the estimation of measurement uncertainties in dimensional X-ray computed tomography. Measurement 45(8), 2166–2182 (2012)

    Article  Google Scholar 

  10. Davis, J., Wells, P.: Computed tomography measurements on wood. Ind. Metrol. 2(3–4), 195–218 (1992)

    Article  Google Scholar 

  11. Bera, T.K., Nagaraju, J.: Sensors for electrical impedance tomography. In: Webster, J.G. (ed.) The Measurement, Instrumentation, and Sensors Handbook, 2nd edition. CRC Press, Boca Raton, Chap. 61, pp. 61-1–61-30 (2014)

    Google Scholar 

  12. Lionheart, W.R.B.: EIT reconstruction algorithms: pitfalls, challenges and recent developments. Review Article, Physiol. Meas. 25, 125–142. PII: S0967-3334(04)70421-9 (2004)

    Google Scholar 

  13. Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving conductivity image quality using block matrix-based multiple regularization (BMMR) technique in EIT: a simulation study. J. Electr. Bioimp. 2, 33–47 (2011)

    Google Scholar 

  14. Bera, T.K., Biswas, S.K., Rajan, K., Nagaraju, J.: Improving image quality in electrical impedance tomography (EIT) using projection error propagation-based regularization (PEPR) technique: a simulation study. J. Electr. Bioimp. 2, 2–12 (2011)

    Google Scholar 

  15. Bera, T.K., Nagaraju, J.: Resistivity imaging of a reconfigurable phantom with circular inhomogeneities in 2D-electrical impedance tomography. Measurement 44(3), 518–526 (2011)

    Article  Google Scholar 

  16. Kerner, T.E., Williams, D.B., Osterman, K.S., Reiss, F.R., Hartov, A., Paulsen, K.D.: Electrical impedance imaging at multiple frequencies in phantoms. Physiol. Meas. 21, 67–77 (2000)

    Article  Google Scholar 

  17. Griffiths, H.: A cole phantom for EIT. Physiol. Meas. 16(1995), A29–A38 (1995)

    Article  Google Scholar 

  18. Kim, B.S., Kim, K.Y., Kao, T.J., Newell, J.C., Isaacson, D., Saulnier, G.J.: Dynamic electrical impedance imaging of a chest phantom using the Kalman filter. Physiol. Meas. 27(5), S81–S91 (2006)

    Article  Google Scholar 

  19. Kimoto, A., Shida, K.: Imaging of temperature-change distribution in the brain phantom by means of capacitance measurement. IEEE Trans. Instrum. Measur. 49(3), 591–595 (2000)

    Google Scholar 

  20. Li, Yi: Manucher soleimani imaging conductive materials with high frequency electrical capacitance tomography. Measurement 46, 3355–3361 (2013)

    Article  Google Scholar 

  21. Sadleiry, R., Foxz, R.: Quantification of blood volume by electrical impedance tomography using a tissue-equivalent phantom. Physiol. Meas. 19, 501–516 (1998)

    Article  Google Scholar 

  22. Holder, D.S., Khan, A.: Use of polyacrylamide gels in a saline-filled tank to determine the linearity of the Sheffield Mark 1 electrical impedance tomography (EIT) system in measuring impedance disturbances. Physiol. Meas. 15, A45–A50 (1994)

    Article  Google Scholar 

  23. Bera, T.K., Nagaraju, J.: A chicken tissue phantom for studying an electrical impedance tomography (EIT) system suitable for clinical imaging. Sens. Imaging Int. J. 12(3–4), 95–116 (2011)

    Article  Google Scholar 

  24. Kao, T.J., Saulnier, G.J., Isaacson, D., Szabo, T.L., Newell, J.C.: A versatile high-permittivity phantom for EIT. IEEE Trans. Biomed. Eng. 55(11), 2601 (2008)

    Article  Google Scholar 

  25. Wanga, P., Guo, B., Li, N.: Multi-index optimization design for electrical resistance tomography sensor. Measurement 46, 2845–2853 (2013)

    Article  Google Scholar 

  26. Bera, T.K., Nagaraju, J.: A stainless steel electrode phantom to study the forward problem of electrical impedance tomography (EIT). Sens. Transducers J. 104(5), 33–40 (2009)

    Google Scholar 

  27. Bera, T.K., Nagaraju. J.: A multifrequency electrical impedance tomography (EIT) system for biomedical imaging. In: IEEE International Conference on Signal Processing and Communications (SPCOM 2012), IISc-Bangalore, India pp. 1–5

    Google Scholar 

  28. Bera, T.K., Nagaraju, J.: A simple instrumentation calibration technique for electrical impedance tomography (EIT) using a 16–electrode phantom. In: Proceedings of The Fifth Annual IEEE Conference on Automation Science and Engineering (IEEE CASE 2009), India, 2009, pp. 347–352

    Google Scholar 

  29. Bera, T.K., Nagaraju, J.: A study of practical biological phantoms with simple instrumentation for electrical impedance tomography (EIT). In: Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC2009), Singapore, pp. 511–516, 5th–7th May 2009

    Google Scholar 

  30. Robitaille, N., Guardo, R., Maurice, I., Hartinger, A.E., Gagnon, H.: A multi-frequency EIT system design based on telecommunication signal processors. Physiol. Meas. 30, S57–S71 (2009)

    Article  Google Scholar 

  31. Goharian, M., Soleimani, M., Jegatheesan, A., Chin, K., Moran, G.R.: A DSP based multi-frequency 3D electrical impedance tomography system. Ann. Biomed. Eng. 36, 1594–1603 (2008)

    Article  Google Scholar 

  32. Oh, T.I., Koo, H., Lee, K.H., Kim, S.M., Lee, J., Kim, S.W., Seo, J.K., Woo, E.J.: Validation of a multi-frequency electrical impedance tomography (mfEIT) system KHU Mark1: impedance spectroscopy and time-difference imaging. Physiol. Meas. 29, 295–307 (2008)

    Article  Google Scholar 

  33. Jennings, D., Schneider, I.D.: Front-end architecture for a multifrequency electrical impedance tomography system. Med. Biol. Eng. Compu. 39(3), 368–374 (2001)

    Article  Google Scholar 

  34. Mohamadou, Y., Oh, T.I., Wi, H., Sohal, H., Farooq, A., Woo, E. J., McEwan, A.: Performance evaluation of wideband bio-impedance spectroscopy using constant voltage source and constant current source. Meas. Sci. Technol. 23(10), 105703 (2012)

    Google Scholar 

  35. Ross, A.S., Saulnier, G.J., Newell, J.C., Isaacson, D.: Current source design for electrical impedance tomography. Physiol. Meas. 24, 509–516 (2003)

    Article  Google Scholar 

  36. Lee, J.W., Oh, T.I., Paek, S.M., Lee, J.S., Woo, E.J.: Precision constant current source for electrical impedance tomography. In: Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, pp. 1066–1069 (2003)

    Google Scholar 

  37. Gnecchi, J.A.G.: Voltage controlled current source (VCCCS) for electrical impedance tomography (EIT) measurements in the α and β dispersion frequency ranges. In: 2010 Electronics, Robotics and Automotive Mechanics Conference, pp. 677–681

    Google Scholar 

  38. Bera, T.K., Nagaraju, J.: A multifrequency constant current source suitable for electrical impedance tomography (EIT). In: Proceedings of 2010 International Conference on Systems in Medicine and Biology. IIT Kharagpur, India, pp. 278–283, 16–18 Dec 2010

    Google Scholar 

  39. Silverio, E.A.A., Silverio, E.A.A.: A high output impedance current source for wideband bioimpedance spectroscopy using 0.35 μm Tsmc Cmos technology. Int. J. Eng. Appl. Sci. 1(2), 68–75 (2012)

    Google Scholar 

  40. Corrêa Alegria, F., Martinho, E., Almeidac, F.: Measuring soil contamination with the time domain induced polarization method using LabVIEW. Measurement 42, 1082–1091 (2009)

    Article  Google Scholar 

  41. Morse D.H., Antolak A.J., Bench G.S., Roberts M.L.: A flexible LabVIEWTM-based data acquisition and analysis system for scanning microscopy. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact Mate Atoms, 158(1), 146–152(7) (2 Sept 1999)

    Google Scholar 

  42. D’Mello, P.C., D’Souza, S.: Design and development of a virtual instrument for bio-signal acquisition and processing using LabVIEW. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 1(1), 1–9 (2012)

    Google Scholar 

  43. Sumathi, S., Surekha, P.: LabVIEW Based Advanced Instrumentation Systems, 1st edn. Springer, Berlin (2007)

    Google Scholar 

  44. Czerwinski, F., Oddershede, L.B.: TimeSeriesStreaming.vi: LabVIEW program for reliable data streaming of large analog time series. Comput. Phys. Commun. 182, 485–489 (2011)

    Article  MATH  Google Scholar 

  45. Bo, L., Liu, X., He, X.: Measurement system for wind turbines noises assessment based on LabVIEW. Measurement 44, 445–453 (2011)

    Article  Google Scholar 

  46. Wang, Z., Shang, Y., Liu, J., Xidong, W.: A LabVIEW based automatic test system for sieving chips. Measurement 46(1), 402–410 (2013)

    Article  Google Scholar 

  47. Giannone, L., Eich, T., Fuchs, J.C., Ravindran, M., Ruan, Q., Wenzel, L., Cernaa, M., Concezzi, S.: Data acquisition and real-time bolometer tomography using LabVIEW RT. Fusion Eng. Des. 86, 1129–1132 (2011)

    Article  Google Scholar 

  48. Yue, X., Drakakis, E.M., Lim, M., Radomska, A., Ye, H., Mantalaris, A., Panoskaltsis, N., Cass, A.: A real-time multi-channel monitoring system for stem cell culture process. IEEE Trans. Biomed. Circuits Syst. 2(2), 66–77 (2008)

    Article  Google Scholar 

  49. Fontenot, R.S., Hollermana, W.A., Aggarwal, M.D., Bhat, K.N., Goedekea, S.M.: A versatile low-cost laboratory apparatus for testing triboluminescent materials. Measurement 45, 431–436 (2012)

    Article  Google Scholar 

  50. Andrei, H., Dogaru-Ulieru, V., Chicco, G., Cepisca, C., Spertino, F.: Photovoltaic applications. J. Mater. Process. Technol. 181, 267–273 (2007)

    Article  Google Scholar 

  51. Ni, J.-Q., Heber, A.J.: An on-site computer system for comprehensive agricultural air quality research. Comput. Electron. Agric. 71, 38–49 (2010)

    Article  Google Scholar 

  52. Ruiz, M., L′opez, J.M., de Arcas, G., Barrera, E., Melendez, R., Vega, J.: Data reduction in the ITMS system through a data acquisition model with self-adaptive sampling rate. Fusion Eng. Des. 83, 358–362 (2008)

    Article  Google Scholar 

  53. Mekida, S., Vacharanukul, K.: In-process out-of-roundness measurement probe for turned work pieces. Measurement 44, 762–766 (2011)

    Article  Google Scholar 

  54. Giannone, L., et al.: Data acquisition and real-time signal processing of plasma diagnostics on ASDEX upgrade using LabVIEW RT. Fusion Eng. Des. 85, 303–307 (2010)

    Article  Google Scholar 

  55. Ionel, R., Vasiu, G., Mischie, S.: GPRS based data acquisition and analysis system with mobile phone control. Measurement 45, 1462–1470 (2012)

    Article  Google Scholar 

  56. Bera, T.K., Nagaraju, J, Studying the 2D resistivity reconstruction of stainless steel electrode phantoms using different current patterns of electrical impedance tomography (EIT). In: Biomedical Engineering, Narosa Publishing House, Proceeding of the International Conference on Biomedical Engineering 2011 (ICBME-2011), India, 2011, pp. 163–69

    Google Scholar 

  57. Bera, T.K., Nagaraju, J.: Studying the resistivity imaging of chicken tissue phantoms with different current patterns in electrical impedance tomography (EIT). Measurement 45, 663–682 (2012)

    Article  Google Scholar 

  58. Malmivuo, J., Plonsey, R.: Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York (1995)

    Book  Google Scholar 

  59. Polydorides, N., Lionheart, W.R.B.: A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas. Sci. Technol. 13, 1871–1883 (2002)

    Article  Google Scholar 

  60. Vauhkonen, M., Lionheart, W.R.B., Heikkinen, L.M., Vauhkonen, P.J., Kaipio, J.P.: A MATLAB package for the EIDORS project to reconstruct two dimensional EIT images. Physiol. Meas. 22(107), 111 (2001)

    Google Scholar 

  61. Mekida, S., Vacharanukul, K.: In-process out-of-roundness measurement probe for turned workpieces. Measurement 44, 762–766 (2011)

    Article  Google Scholar 

  62. Data Sheet, NI USB 6251 OEM, High-Speed M Series Multifunction Data Acquisition (DAQ) Module, National Instruments, USA

    Google Scholar 

  63. Data Sheet, NI SCB68, Shielded I/O Connector Block, National Instruments, USA

    Google Scholar 

  64. Data Sheet, CD4067BE IC, CMOS Analog Multiplesers/Demultiplexers, Texas Instruments Inc., USA (2012)

    Google Scholar 

  65. Bera, T.K., Nagaraju, J.: Surface electrode switching of a 16-electrode wireless EIT system using RF-based digital data transmission scheme with 8 channel encoder/decoder ICs. Measurement 45, 541–555 (2012)

    Article  Google Scholar 

  66. Cheng, K.S., Simske, S.J., Isaacson, D., Newell, J.C., Gisser, D.G.: Errors due to measuring voltage on current-carrying electrodes in electric current computed tomography. IEEE Trans. Biomed. Eng. 37(60), 60–65 (1990)

    Article  Google Scholar 

  67. Rosell, J., Riu, P.: Common-mode feedback in electrical impedance tomography. Clin. Phys. Physiol. Meas. 13(Suppl. 4), 11–14 (1992)

    Article  Google Scholar 

  68. Rahal, M., Rida, I., Usman, M., Demosthenous, A.: New techniques to reduce the common-mode signal in multi-frequency EIT applications. In: PIERS Proceedings, Marrakesh, MOROCCO, pp. 1598–1601 (20–23 March 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Kanti Bera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Bera, T.K., Nagaraju, J. (2014). A LabVIEW Based Data Acquisition System for Electrical Impedance Tomography (EIT). In: Pant, M., Deep, K., Nagar, A., Bansal, J. (eds) Proceedings of the Third International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 259. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1768-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1768-8_34

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1767-1

  • Online ISBN: 978-81-322-1768-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics