Skip to main content

Landuse Change Prediction and Its Impact on Surface Run-off Using Fuzzy C-Mean, Markov Chain and Curve Number Methods

  • Conference paper
  • First Online:
Proceedings of the Third International Conference on Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 259))

Abstract

The landuse change has considerable impact on the surface run-off of a catchment. With the changing landuse there is reduction in the initial abstraction which results in increasing run-off. This also has effect on future because of constant change in landuse due to urbanization. The Soil Conservation Service Curve Number (SCS-CN) model was used in the study for calculating run-off in a sub-catchment of Narmada River basin for the years 1990, 2000 and 2011 which was further validated with the observed data from the gauges. Stream flow of future for 2020 and 2030 was estimated by this method to observe the impact of landuse change on run-off. The landuse classification was done by Fuzzy C-Mean algorithm. The future landuse prediction for 2020 and 2030 was performed with the Markov Chain Model with 2011 validation. Future run-off was generated on the basis of changing landuse which shows increasing rate of run-off.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kokkonen, T.S., Jakeman, A.J.: Structural effects of landscape and landuse on streamflow response. In: Beck, M.B. (ed.) Environmental foresight and models: a manifesto, pp. 303–321. Elsevier, Oxford (2002)

    Chapter  Google Scholar 

  2. Langford, K.J.: Change in yield of water following a bush fire in a forest of Eucalyptus regnans. J. Hydrol. 29, 87–114 (1976)

    Article  Google Scholar 

  3. Hibbert, A.R.: Forest treatment effects on water yield. In: Sopper, W.E., Lull, H.W. (eds.) International symposium on forest hydrology, p. 813. Pergamon, Oxford (1967)

    Google Scholar 

  4. Bosch, J.M., Hewlett, J.D.: A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 55, 3–23 (1982)

    Article  Google Scholar 

  5. Hollis, G.E.: The effect of urbanization on flood of different recurrence interval. Water Resour. Res. 11, 431–435 (1975)

    Article  Google Scholar 

  6. Fohrer, N., Haverkamp, S., Eckhardt, K., Frede, H.G.: Hydrologic response to landuse changes on the catchment scale. Phys. Chem. Earth (B) 26, 577–582 (2001)

    Article  Google Scholar 

  7. De Roo, A., Odijk, M., Schmuck, G., Koster, E., Lucieer, A.: Assessing the effects of landuse changes in the Meuse and Oder catchment. Phys. Chem. Earth (B) 26, 593–599 (2001)

    Article  Google Scholar 

  8. Braud, I., Vich, A.I.J., Zuluaga, J., Fornero, L., Pedrani, A.: Vegetation influence on runoff and sediment yield in the Andes region: observation and modelling. J. Hydrol. 254, 124–144 (2001)

    Article  Google Scholar 

  9. Schreider, S.Y., Jakeman, A.J., Letcher, R.A., Nathan, R.J., Neal, B.P., Beavis, S.G.: Detecting changes in streamflow response to changes in non-climatic catchment conditions: farm dam development in the Murray-Darling basin. Aust. J. Hydrol. 262, 84–98 (2002)

    Article  Google Scholar 

  10. Beven, K.J.: Rainfall-runoff modelling: the primer. Wiley, New York (2000)

    Google Scholar 

  11. Bronstert, A., Niehoff, D., Burger, G.: Effects of climate and land-use change on storm runoff generation: present knowledge and modelling capabilities. Hydrol. Process. 16, 509–529 (2002)

    Article  Google Scholar 

  12. Ranzi, R., Bochicchio, M., Bacchi, B.: Effects on floods of recent afforestation and urbanisation in the Mella River (Italian Alps). Hydrol. Earth Syst. Sci. 6, 239–253 (2002)

    Article  Google Scholar 

  13. USDA Soil Conservation Service.: National Engineering Handbook Section 4 Hydrology. Chapters 4–10 (1972)

    Google Scholar 

  14. USDA Soil Conservation Service.: National Engineering Handbook Section 4 Hydrology. Chapter 19 (1983)

    Google Scholar 

  15. USDA-SCS.: National Engineering Handbook, Section 4 Hydrology. Washington, D.C. (1985)

    Google Scholar 

  16. Stuebe, M.M., Johnston, D.M.: Run-off volume estimation using GIS techniques. J. Am. Water Resour. Assoc. 26, 611–620 (1990)

    Article  Google Scholar 

  17. Mishra, S.K., Singh, V.P.: Another look at the SCS-CN method. J. Hydrol. Eng. ASCE 4, 257–264 (1999)

    Article  Google Scholar 

  18. Mishra, S.K., Singh, V.P.: SCS-CN based hydrological simulation package. In: Singh V.P., Frevert D.K. (eds) mathematical Models in Small Watershed Hydrology and applications, pp. 391–464. Water Resources Publications, Littleton (2002)

    Google Scholar 

  19. Schneider, L.E., McCuen, R.H.: Statistical guidelines for curve number generation. J Irrig. Drainage Eng. ASCE 131, 282–290 (2005)

    Article  Google Scholar 

  20. Pandey, A., Sahu, A.K.: Generation of curve number using remote sensing and Geographic Information System. (2002). (http://www.gisdevelopment.net/application/nrm/water/watershed/watws0015pf.htm)

  21. Yang, T.C., Yu, P.S.: The effect of landuse change on the design hydrograph. J. Hydrol. Changing Environ. 3, 207–216 (1998)

    Google Scholar 

  22. Kim, Y., Engel, B.A., Lim, K.J.: Runoff impacts of landuse change in Indian river Lagoon watershed. J. Hydrol. Eng. 7, 245–251 (2002)

    Article  Google Scholar 

  23. Okoński, B.: Hydrological response to landuse change in central European lowland forest catchment. J. Environ. Eng. Landscape Manage. 15, 3–13 (2007)

    Google Scholar 

  24. He, C.Y., Shi, P.J., Chen, J., Zhou, Y.Y.: A study on landuse/cover change in Beijing area. Geogr. Res. 20(6), 679–687 (2000)

    Google Scholar 

  25. Zhang, Q., Wang, J., Peng, X., Gong, P., Shi, P.: Urban built-up land change detection with road density and spectral information from multi-temporal Landsat TM data. Int. J. Remote Sens. 23(15), 3057–3078 (2002)

    Article  Google Scholar 

  26. Brown, D.G., Pijanowski, B.C., Duh, J.D.: Modeling the relationships between landuse and land cover on private lands in the Upper Midwest. USA J. Environ. Manage. 59, 247–263 (2000)

    Article  Google Scholar 

  27. Jahan, S.: The determination of stability and similarity of Markovian landuse change processes: a theoretical and empirical analysis. Socio-Econ Planning Sci. 20, 243–251 (1986)

    Article  Google Scholar 

  28. Muller, R.M., Middleton, J.: A Markov model of land-use change dynamics in the Niagara region, Ontario, Canada. Landscape Ecol. 9, 151–157 (1994)

    Google Scholar 

  29. Weng, Q.: Landuse change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modeling. J. Environ. Manage. 64, 273–284 (2002)

    Article  Google Scholar 

  30. Peterson, L.K., Bergen, K.M., Brown, D.G., Vashchuk, L., Blam, Y.: Forested land-cover patterns and trends over changing forest management eras in the Siberian Baikal region. For. Ecol. Manage. 257, 911–922 (2009)

    Article  Google Scholar 

  31. Zhang, R., Tang, C., Ma, S., Yuan, H., Gao, L., Fan, W.: Using Markov chains to analyze changes in wetland trends in arid Yinchuan Plain. Chin Math. Comput. Model. 54, 924–930 (2011)

    Article  Google Scholar 

  32. Chow, V.T., Maidment, D.R., Mays, L.W.: Applied Hydrology. McGraw-Hill, Singapore (1988)

    Google Scholar 

  33. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  34. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  35. Lillesand, T.M., Kiefer, R.W., Chipman, J.W.: Remote sensing and image interpretation. Wiley, New York (2008)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the United States Geographical Survey (USGS) and NRSC for providing the Landsat and LISS-III satellite imageries for the study area. The authors are also thankful to the Indian Meteorological Department for providing rainfall and run-off data and to the CSIR for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Mondal, A., Khare, D., Kundu, S., Mishra, P.K., Meena, P.K. (2014). Landuse Change Prediction and Its Impact on Surface Run-off Using Fuzzy C-Mean, Markov Chain and Curve Number Methods. In: Pant, M., Deep, K., Nagar, A., Bansal, J. (eds) Proceedings of the Third International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 259. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1768-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1768-8_33

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1767-1

  • Online ISBN: 978-81-322-1768-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics