Physiology of Urinary Continence



Maintenance of bladder continence involves a multitude of interactions between neural pathways in the brain and spinal cord, local neural pathways in the bladder and urethra, the smooth and striated muscles of the bladder and urethra and also local mediators in the urothelium and suburothelium. Disruption at any level of this system can result in urinary incontinence. Hence, a good understanding of the normal physiology of the micturition cycle is necessary to provide insight into the mechanisms of disease. The anatomical basis of continence has been discussed in the chapter on Current Concepts of Pelvic Anatomy. In this chapter, the function of the nervous system, smooth muscle and the role of urothelium and suburothelium in the maintenance of continence will be discussed.


Dorsal Root Ganglion Detrusor Overactivity Detrusor Muscle Bladder Filling Detrusor Smooth Muscle 


  1. 1.
    Griffiths DJ, Fowler CJ. The micturition switch and its forebrain influences. Acta Physiol (Oxf). 2013;207:93–109.CrossRefGoogle Scholar
  2. 2.
    Fowler CJ, Griffiths D, de Groat W. The neural control of micturition. Nat Rev Neurosci. 2008;9:453–66.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Sasaki M. Morphological analysis of external urethral and external anal sphincter motor neurones of cat. J Comp Neurol. 1994;349:269–87.PubMedCrossRefGoogle Scholar
  4. 4.
    Araki I, de Groat W. Developmental synaptic depression underlying reorganisation of visceral reflex pathways in the spinal cord. J Neurosci. 1997;17(21):8402–7.PubMedGoogle Scholar
  5. 5.
    Vizzard M, Erickson V, Card J, et al. Transneuronal labelling of neurons in the adult rat brainstem and spinal cord after injection of pseudo rabies virus into the urethra. J Comp Neurol. 1995;355:629–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Blok B, Weer H, Holstege G. Ultra structural evidence for a paucity of projections from the lumbosacral cord to the pontine micturition centre or M-region in the cat: a new concept for the organization of the micturition reflex with the periaqueductal gray as central relay. J Comp Neurol. 1995;359:300–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Holstege G, Griffiths D, de Wall H, Dalm E. Anatomical and physiological observations on supraspinal control of bladder and urethral sphincter muscles in the cat. J Comp Neurol. 1986;250:449–61.PubMedCrossRefGoogle Scholar
  8. 8.
    Nour S, Svarer C, Kristensen J, et al. Cerebral activation during micturition in normal men. Brain. 2000;123:781–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Griffiths D, Tadic S. Bladder control, urgency and urge incontinence: evidence from functional brain imaging. Neurourol Urodyn. 2008;27:466–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Sasaki M. Feed-forward and feedback regulation of bladder contractility by Barrington’s nucleus in cats. J Physiol. 2004;557:287–305.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    de Groat W, et al. Developmental and injury induced plasticity in the micturition reflex pathway. Behav Brain Res. 1998;92:127–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Pardo J, Fox P, Raichle M. Localisation of a human system for sustained attention by positron emission tomography. Nature. 1991;349:61–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Holstege G. Micturition and the soul. J Comp Neurol. 2005;493:15–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Amiodo D, Frith C. Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci. 2006;7:268–77.CrossRefGoogle Scholar
  15. 15.
    Blok B, Willemsen T, Holstege G. A PET study of brain control of micturition in humans. Brain. 1997;120:111–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Blok B, Sturms L, Holstege G. Brain activation during micturition in women. Brain. 1998;121:2033–42.PubMedCrossRefGoogle Scholar
  17. 17.
    Smet P, Jonavicius J, Marshall V, de Vente J. Distribution of nitric oxide synthase immune-reactive nerves and identification of the cellular targets of nitric oxide in guinea pig and human urinary bladder by cGMP immuno histochemistry. Neuroscience. 1996;71:337–48.PubMedCrossRefGoogle Scholar
  18. 18.
    Brading A, Mostwin J. Electrical and mechanical responses of guinea-pig bladder muscle to nerve stimulation. Br J Pharmacol. 1989;98:1083–90.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Yoshimura N, Chancellor M. Physiology of micturition. Chapter 23. In: Textbook of female urology and urogynaecology. 3rd ed. London: Informa; 2010.Google Scholar
  20. 20.
    John H, Wang X, Wehrli E, Hauri D, Maake C. Evidence of gap junctions in the stable non obstructed human bladder. J Urol. 2003;169:754–9.CrossRefGoogle Scholar
  21. 21.
    Fry C, Sui G, Severs N, Wu C. Spontaneous activity and electrical coupling in human detrusor smooth muscle: implications for detrusor overactivity? Urology. 2004;63:3–10.PubMedCrossRefGoogle Scholar
  22. 22.
    Neuhaus J, Pfeiffer F, Wolburg H, Horn L, Dorschner W. Alterations in connexin expression in the bladder of patients with urge symptoms. BJU Int. 2005;96:670–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Mills I, Greenland J, McMurray G, McCoy R, Ho K, Noble J, Brading A. Studies of the pathophysiology of idiopathic detrusor instability: the physiological properties of the detrusor smooth muscle and its pattern of innervation. J Urol. 2000;163:646–51.PubMedCrossRefGoogle Scholar
  24. 24.
    Fry C, Skennerton D, Wood D, Wu C. The cellular basis of contraction in human detrusor smooth muscle from patients with stable and unstable bladders. Urology. 2002;59(5 Suppl 1):3–12.PubMedCrossRefGoogle Scholar
  25. 25.
    Derblade B, Behr-Roussel D, Oger S, et al. Effects of potassium channel modulators on human detrusor smooth muscle myogenic phasic contractile activity: potential therapeutic targets for overactive bladder. Urology. 2006;68:442–8.CrossRefGoogle Scholar
  26. 26.
    Drake M, Harvey I, Gillespie J, van Duyl W. Localized contractions in the normal human bladder and in urinary urgency. BJU Int. 2005;95:1002–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Drake M, Mills I, Gillespie J. Models of peripheral autonomous modules and a myovesical plexus in normal and overactive bladder function. Lancet. 2001;358:401–3.PubMedCrossRefGoogle Scholar
  28. 28.
    Kumar V, Cross R, Chess-Williams R, Chapple C. Recent advances in basic science for the overactive bladder. Curr Opin Urol. 2005;15:222–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Thor K, Morgan C, Nadelhaft I, et al. Organisation of afferent and efferent pathways in the pudendal nerve of the female cat. J Comp Neurol. 1989;288:263–79.PubMedCrossRefGoogle Scholar
  30. 30.
    deGroat W, Vizzard M, Araki I, Roppolo J. Spinal interneurons and preganglionic neurons in sacral autonomic reflex pathways. Prog Brain Res. 1996;107:97–111.PubMedCrossRefGoogle Scholar
  31. 31.
    Habler H, Janig W, Koltzenburg M. Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. J Physiol. 1990;425:545–62.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Liu H, Kuo H. Increased expression of transient receptor potential vanilloid subfamily 1 in the bladder predicts the response to intravesical instillations of resiniferatoxin in patients with refractory idiopathic detrusor overactivity. BJU Int. 2007;100:1086–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Liu L, Mansfield K, Kristiana I, Vaux K, Millard R, Burchner E. The molecular basis of urgency: regional difference of vanilloid receptor expression in the human urinary bladder. Neurourol Urodyn. 2007;26:433–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Kanai A, de Groat W, Birder L, Chai T, Hultgren S, Fowler C, Fry C. Symposium report on urothelial dysfunction: pathophysiology and novel therapies. J Urol. 2006;175:1624–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Yoshida M, Miyamae K, Iwashita H, Otani M, Iandome A. Management of detrusor dysfunction in the elderly: changes in acetylcholine and adenosine triphosphate release during ageing. Urology. 2004;63(3 Suppl 1):17–23.PubMedCrossRefGoogle Scholar
  36. 36.
    Kim J, Park E, Seo S, Park Y, Hwang T. Nerve growth factor and prostaglandins in the urine of female patients with overactive bladder. J Urol. 2006;175:1773–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Liu H, Chen C, Kuo H. Urinary nerve growth factor in women with overactive bladder syndrome. BJU Int. 2011;107:799–803.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhong Y, Banning A, Cockayne D, Ford A, Burnstock G, McMahon S. Bladder and cutaneous sensory neurons of the rat express different functional P2X receptors. Neuroscience. 2003;120:667–75.PubMedCrossRefGoogle Scholar
  39. 39.
    Ford A, Cockayne D. ATP and P2X receptors in urinary tract disorders. Handb Exp Pharmacol. 2011;202:485–526.PubMedCrossRefGoogle Scholar
  40. 40.
    Cockayne D, Hamilton S, Zhu Q, et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature. 2000;407:1011–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Brady C, Apostolidis A, Yiangou Y, Baecker P, Ford A, Freeman A, Jacques T, Fowler C, Anand P. P2X3-immunoreactive nerve fibres in neurogenic detrusor overactivity and the effect of intravesical resiniferatoxin. Eur Urol. 2004;46:247–53.PubMedCrossRefGoogle Scholar
  42. 42.
    Kumar V, Chapple C, Rosario D, Tophill P, Chess-Williams R. In vitro release of adenosine triphosphate from the urothelium of human bladders with detrusor overactivity, both neurogenic and idiopathic. Eur Urol. 2010;57:1087–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Sadananda P, Shang F, Liu L, Mansfield K, Burcher E. Release of ATP from rat urinary bladder mucosa: role of acid, vanilloids and stretch. Br J Pharmacol. 2009;158:1655–62.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Nishiguchi J, Hayashi Y, Chancellor M, de Miguel F, de Groat W, Kumon H, Yoshimura N. Detrusor overactivity induced by intravesical application of adenosine 5’- triphosphate under different delivery conditions in rats. Urology. 2005;66:1332–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Cheng Y, Mansfield K, Allen W, Walsh C, Burcher E, Moore K. Does adenosine triphosphate released into voided urodynamic fluid contribute to urgency signalling in women with bladder dysfunction? J Urol. 2010;183:1082–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Andersson K, Yoshida M. Antimuscarinics and the overactive bladder – which is the main mechanism of action? Eur Urol. 2003;43:1–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Lips K, Wunsch J, Zarghooni S, et al. Acetylcholine and molecular components of its synthesis and release machinery in the urothelium. Eur Urol. 2007;51:1042–53.PubMedCrossRefGoogle Scholar
  48. 48.
    Yoshida M, Inadome A, Maeda Y, Satoji Y, Masunaga K, Sujiyama Y, Murakami S. Non-neuronal cholinergic system in human bladder urothelium. Urology. 2006;67:425–30.PubMedCrossRefGoogle Scholar
  49. 49.
    De Wachter S, Wyndaele J. Intravesical oxybutynin: a local anaesthetic effect on bladder C afferents. J Urol. 2003;169:1892–5.PubMedCrossRefGoogle Scholar
  50. 50.
    De Laet K, De Wachter S, Wyndaele J. Systemic oxybutynin decreases afferent activity of the pelvic nerve of the rat: new insights into the working mechanism of antimuscarinics. Neurourol Urodyn. 2006;25:156–61.PubMedCrossRefGoogle Scholar
  51. 51.
    Iijima K, De Wachter S, Wyndaele J. Effects of the M3 receptor selective muscarinic antagonist darifenacin on bladder afferent activity of the rat pelvic nerve. Eur Urol. 2007;52:842–9.Google Scholar
  52. 52.
    Matsumoto Y, Miyazato M, Furuta A, Torimoto K, Hirao Y, Chancellor M, Yoshimura N. Differential roles of M2 and M3 muscarinic receptor subtypes in modulation of bladder afferent activity in rats. Urology. 2010;75:862–7.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Aizawa N, Igawa Y, Nishizawa O, Wyndaele J. Effects of nitric oxide on the primary bladder afferent activities of the rat with and without intravesical acrolein treatment. Eur Urol. 2011;59:264–71.PubMedCrossRefGoogle Scholar
  54. 54.
    Caremel R, Oger-Roussel S, Behr-Roussel D, Grise P, Giuliano F. Nitric oxide/cyclic guanosine monophosphate signalling mediates an inhibitory action on sensory pathways of the micturition reflex in the rat. Eur Urol. 2010;58:616–25.PubMedCrossRefGoogle Scholar
  55. 55.
    Pandita R, Mizusawa H, Andersson K. Intravesical oxyhaemoglobin initiates bladder overactivity in conscious normal rats. J Urol. 2000;164:545–50.PubMedCrossRefGoogle Scholar
  56. 56.
    Wuest M, Eichhorn B, Grimm M, Wirth M, Ravens U, Kaumann A. Catecholamines relax detrusor through beta-2 adrenoceptors in mouse and beta-3 adrenoceptors in man. J Pharmacol Exp Ther. 2009;328:213–22.PubMedCrossRefGoogle Scholar
  57. 57.
    Limberg B, Andersson K, Aura Kullmann F, Burmer G, de Groat W, Rosenbaum J. β-adrenergic receptor subtype expression in myocyte and non-myocyte cells in human female bladder. Cell Tissue Res. 2010;342:295–306.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Kanie S, Otsuka A, Yoshikawa S, et al. Pharmacological effect of TRK-380, a novel selective human β3-adrenoceptor agonist, on mammalian detrusor strips. Urology. 2012;79:744 e.1–7.CrossRefGoogle Scholar
  59. 59.
    Aizawa N, Igawa Y, Nishizawa O, Wyndaele J. Effects of CL316,243, a beta 3-adrenoreceptor agonist, and intravesical prostaglandin E2 on the primary bladder afferent activity of the rat. Neurourol Urodyn. 2010;29:771–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Birder L, Apodaca G, de Groat W, Kanai A. Adrenergic- and capsaicin-evoked nitric oxide release from urothelium and afferent nerves in urinary bladder. Am J Physiol. 1998;275(2 Pt 2):F226–9.PubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department Obstetrics and GynaecologyMedway HospitalGillingham, KentUK

Personalised recommendations