Nanoparticulate Formulations for Pesticide Applications

  • Arnab De
  • Rituparna Bose
  • Ajeet Kumar
  • Subho Mozumdar
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


The following sections give details of the nanoparticulate formulation developed by various researchers. The innovative technology to formulate the nanoparticle is briefly discussed along the entrapment strategies. Few biological models for testing the efficacy of these developed formulations on insect model have also been included.


Shell Thickness Entrapment Efficiency Microemulsion System Microemulsion Formulation Hollow Silica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abad P, Gouzy J, Aury J-M, Castagnone-Sereno P, Danchin EG, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26(8):909–915CrossRefGoogle Scholar
  2. Ahmad SN, Islam MT, Abdullah DK, Omar D (2012) Evaluation of physicochemical characteristics of microemulsion formulation of rotenone and its insecticidal efficacy against Plutella xylostella L.(Lepidoptera: Plutellidae). Food, Agriculture and Environment (JFAE) 10(3&4):384–388Google Scholar
  3. Amrhein N, Schab J, Steinrücken H (1980) The mode of action of the herbicide glyphosate. Naturwissenschaften 67(7):356–357CrossRefGoogle Scholar
  4. Anees AM (2008) Larvicidal activity of Ocimum sanctum Linn. (Labiatae) against Aedes aegypti (L.) and Culex quinquefasciatus (Say). Parasitol Res 103(6):1451–1453CrossRefGoogle Scholar
  5. Anjali CH, Sudheer Khan S, Margulis-Goshen K, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73(8):1932–1936CrossRefGoogle Scholar
  6. Bentley MD, Hassanali A, Lwande W, Njoroge PEW, Sitayo ENO, Yatagai M (1987) Insect antifeedants from Tephrosia elata Deflers. Int J Trop Insect Sci 8(01):85–88. doi: 10.1017/S1742758400007025 CrossRefGoogle Scholar
  7. Chaw Jiang L, Basri M, Omar D, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RNZ, Selamat A (2012) Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pestic Biochem Physiol 102(1):19–29. doi: 10.1016/j.pestbp.2011.10.004
  8. Chhetri AB, Tango MS, Budge SM, Watts KC, Islam MR (2008) Non-edible plant oils as new sources for biodiesel production. Int J Mol Sci 9(2):169–180CrossRefGoogle Scholar
  9. Choudhury SR, Pradhan S, Goswami A (2012) Preparation and characterisation of acephate nano-encapsulated complex. Nanosci Meth 1(1):9–15CrossRefGoogle Scholar
  10. Cognis G (2007) Agnique PG Accessed 2 May 2013
  11. Crombie L (1999) Natural product chemistry and its part in the defence against insects and fungi in agriculture. Pestic Sci 55(8):761–774. doi: 10.1002/(sici)1096-9063(199908)55:8<761:aid-ps26>;2-2 CrossRefGoogle Scholar
  12. European-Pharmacopoeia (2005) European Pharmacopoeia vol 5.0. Convention on the Elaboration of a European Pharmacopoeia. Council of EuropeGoogle Scholar
  13. EXTOXNET (1995) Pesticide Information Profile: Azadirachtin. Accessed 2 May 2013
  14. Fradin MS, Day JF (2002) Comparative efficacy of insect repellents against mosquito bites. N Engl J Med 347(1):13–18. doi: 10.1056/NEJMoa011699 CrossRefGoogle Scholar
  15. Guadaño A, Gutiérrez C, de la Peña E, Cortes D, González-Coloma A (2000) Insecticidal and mutagenic evaluation of two Annonaceous Acetogenins. J Nat Prod 63(6):773–776. doi: 10.1021/np990328+ CrossRefGoogle Scholar
  16. Hemsley AR, Poole I (2004) The evolution of plant physiology, vol 21. ElsevierGoogle Scholar
  17. Hu M, Zhong G, Sun ZT, Sh G, Liu H, Liu X (2005) Insecticidal activities of secondary metabolites of endophytic Pencillium sp. in Derris elliptica Benth. J Appl Entomol 129(8):413–417CrossRefGoogle Scholar
  18. Hunsche M, Damerow L, Schmitz-Eiberger M, Noga G (2007) Mancozeb wash-off from apple seedlings by simulated rainfall as affected by drying time of fungicide deposit and rain characteristics. Crop Prot 26(5):768–774CrossRefGoogle Scholar
  19. Ichwan AM, Karimi M, Dash AK (1999) Use of gelatin–acacia coacervate containing benzocaine in topical formulations. J Pharm Sci 88(8):763–766CrossRefGoogle Scholar
  20. Jiang LC, Basri M, Omar D, Rahman MBA, Salleh AB, Rahman RNZRA (2011) physicochemical characterization of nonionic surfactants in oil-in-water (O/W) nano-emulsions for new pesticide formulations. Int J Appl Sci Technol 1(5)Google Scholar
  21. Koundal K, Rajendran P (2003) Plant insecticidal proteins and their potential for developing transgenics resistant to insect pests. Indian J Biotechnol 2(1):110–120Google Scholar
  22. Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45(1):89–121. doi: 10.1016/S0169-409X(00)00103-4 CrossRefGoogle Scholar
  23. Lee JB, Lee SH (2011) Dynamic wetting and spreading characteristics of a liquid droplet impinging on hydrophobic textured surfaces. Langmuir 27(11):6565–6573. doi: 10.1021/la104829x CrossRefGoogle Scholar
  24. Li H, Geng S (2013) Development and characterization of microsatellite markers for Derris elliptica (Fabaceae), an insecticide-producing plant. Sci Hortic 154:54–60. doi: 10.1016/j.scienta.2013.02.026 CrossRefGoogle Scholar
  25. Li Z-Z, Xu S-A, Wen L-X, Liu F, Liu A-Q, Wang Q, Sun H-Y, Yu W, Chen J-F (2006) Controlled release of avermectin from porous hollow silica nanoparticles: Influence of shell thickness on loading efficiency, UV-shielding property and release. J Controlled Release 111(1–2):81–88. doi: 10.1016/j.jconrel.2005.10.020 CrossRefGoogle Scholar
  26. Li Z-Z, Chen J-F, Liu F, Liu A-Q, Wang Q, Sun H-Y, Wen L-X (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63(3):241–246. doi: 10.1002/ps.1301 CrossRefGoogle Scholar
  27. Lim CJ, Basri M, Omar D, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RNZ (2012) Physicochemical characterization and formation of glyphosate-laden nano-emulsion for herbicide formulation. Ind Crops Prod 36(1):607–613. doi: 10.1016/j.indcrop.2011.11.005 CrossRefGoogle Scholar
  28. Lim CJ, Basri M, Omar D, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RNZ (2013) Green nanoemulsion-laden glyphosate isopropylamine formulation in suppressing creeping foxglove (A. gangetica), slender button weed (D. ocimifolia) and buffalo grass (P. conjugatum). Pest Manage Sci 69(1):104–111. doi: 10.1002/ps.3371
  29. Liu H, Cupp EW, Micher KM, Guo A, Liu N (2004) Insecticide resistance and cross-resistance in Alabama and Florida strains of Culex quinquefaciatus. J Med Entomol 41(3):408–413CrossRefGoogle Scholar
  30. Liu F, Wen L-X, Li Z-Z, Yu W, Sun H-Y, Chen J-F (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275CrossRefGoogle Scholar
  31. Liu Y, Wei F, Wang Y, Zhu G (2011) Studies on the formation of bifenthrin oil-in-water nano-emulsions prepared with mixed surfactants. Colloids Surf, A 389(1–3):90–96. doi: 10.1016/j.colsurfa.2011.08.045 CrossRefGoogle Scholar
  32. Maia MF, Moore SJ (2011) Plant-based insect repellents: a review of their efficacy, development and testing. Malar J 10(Suppl 1):S11CrossRefGoogle Scholar
  33. Malmsten M (2002) Surfactants and polymers in drug delivery, vol 122. Drugs and the pharmaceutical sciences. Marcel Dekker, Inc, New YorkGoogle Scholar
  34. Masmoudi H, Piccerelle P, Le Dréau Y, Kister J (2006) A rheological method to evaluate the physical stability of highly viscous pharmaceutical oil-in-water emulsions. Pharm Res 23(8):1937–1947CrossRefGoogle Scholar
  35. Matsui T, Ito C, Furukawa H, Okada T, Itoigawa M (2013) Lansiumamide B and SB-204900 isolated from Clausena lansium inhibit histamine and TNF-α release from RBL-2H3 cells. Inflamm Res 62(3):333–341. doi: 10.1007/s00011-012-0586-8 CrossRefGoogle Scholar
  36. Metcalf RL (1948) The mode of action of organic insecticides, vol 1–5. National AcademiesGoogle Scholar
  37. Mohibbe Azam M, Waris A, Nahar NM (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy 29(4):293–302. doi: 10.1016/j.biombioe.2005.05.001 CrossRefGoogle Scholar
  38. Nawrot J, Harmatha J, Kostova I, Ognyanov I (1989) Antifeeding activity of rotenone and some derivatives towards selected insect storage pests. Biochem Syst Ecol 17(1):55–57. doi: 10.1016/0305-1978(89)90043-4 CrossRefGoogle Scholar
  39. Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Bioresour Technol 101(1):372–378. doi: 10.1016/j.biortech.2009.07.048 CrossRefGoogle Scholar
  40. Nisbet AJ (2000) Azadirachtin from the neem tree Azadirachta indica: its action against insects. Anais da Sociedade Entomológica do Brasil 29(4):615–632CrossRefGoogle Scholar
  41. Oka Y, Shuker S, Tkachi N (2009) Nematicidal efficacy of MCW-2, a new nematicide of the fluoroalkenyl group, against the root-knot nematode Meloidogyne javanica. Pest Manag Sci 65(10):1082–1089. doi: 10.1002/ps.1796 CrossRefGoogle Scholar
  42. Patravale V, Kulkarni R (2004) Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 56(7):827–840CrossRefGoogle Scholar
  43. Peng L-C, Liu C-H, Kwan C-C, Huang K-F (2010) Optimization of water-in-oil nanoemulsions by mixed surfactants. Colloids Surf, A 370(1–3):136–142. doi: 10.1016/j.colsurfa.2010.08.060 CrossRefGoogle Scholar
  44. Pereira F, Moreira C, Fonseca L, van Asch B, Mota M, Abrantes I, Amorim A (2013) New insights into the phylogeny and worldwide dispersion of two closely related nematode species, Bursaphelenchus xylophilus and Bursaphelenchus mucronatus. PLoS ONE 8(2):e56288. doi: 10.1371/journal.pone.0056288 CrossRefGoogle Scholar
  45. Perkins M, Bell G, Briggs D, Davies M, Friedman A, Hart C, Roberts C, Rutten F (2008) The application of ToF-SIMS to the analysis of herbicide formulation penetration into and through leaf cuticles. Colloids Surf, B 67(1):1–13CrossRefGoogle Scholar
  46. Pey CM, Maestro A, Solé I, González C, Solans C, Gutiérrez JM (2006) Optimization of nano-emulsions prepared by low-energy emulsification methods at constant temperature using a factorial design study. Colloids Surf, A 288(1–3):144–150. doi: 10.1016/j.colsurfa.2006.02.026 CrossRefGoogle Scholar
  47. Pradhan S, Roy I, Lodh G, Patra P, Choudhury SR, Samanta A, Goswami A (2013) Entomotoxicity and biosafety assessment of PEGylated acephate nanoparticles: A biologically safe alternative to neurotoxic pesticides. J Environ Sci Health, Part B 48(7):559–569CrossRefGoogle Scholar
  48. Pratap AP, Bhowmick D (2008) Pesticides as microemulsion formulations. J Dispersion Sci Technol 29(9):1325–1330CrossRefGoogle Scholar
  49. Prince LM (1975) Microemulsions versus micelles. J Colloid Interface Sci 52(1):182–188. doi: 10.1016/0021-9797(75)90315-X CrossRefGoogle Scholar
  50. Putter I, Mac Connell J, Preiser F, Haidri A, Ristich S, Dybas R (1981) Avermectins: novel insecticides, acaricides and nematicides from a soil microorganism. Experientia 37(9):963–964CrossRefGoogle Scholar
  51. Raizada RB, Srivastava MK, Kaushal RA, Singh RP (2001) Azadirachtin, a neem biopesticide: subchronic toxicity assessment in rats. Food Chem Toxicol 39(5):477–483. doi: 10.1016/S0278-6915(00)00153-8 CrossRefGoogle Scholar
  52. Rane SS, Anderson BD (2008) What determines drug solubility in lipid vehicles: is it predictable? Adv Drug Deliv Rev 60(6):638–656. doi: 10.1016/j.addr.2007.10.015 CrossRefGoogle Scholar
  53. Reddy KN, Singh M (1992) Organosilicone adjuvants increased the efficacy of glyphosate for control of weeds in citrus (Citrus spp.). HortScience 27(9):1003–1005Google Scholar
  54. Reichenberger S, Bach M, Skitschak A, Frede H-G (2007) Mitigation strategies to reduce pesticide inputs into ground-and surface water and their effectiveness: a review. Sci Total Environ 384(1):1–35CrossRefGoogle Scholar
  55. Sakulku U, Nuchuchua O, Uawongyart N, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm 372(1–2):105–111. doi: 10.1016/j.ijpharm.2008.12.029 CrossRefGoogle Scholar
  56. Schulman JH, Stoeckenius W, Prince LM (1959) Mechanism of formation and structure of micro emulsions by electron microscopy. J Phys Chem 63(10):1677–1680. doi: 10.1021/j150580a027 CrossRefGoogle Scholar
  57. Sharma S, Singh M (2000) Optimizing foliar activity of glyphosate on Bidens frondosa and Panicum maximum with different adjuvant types. Weed Res 40(6):523–533CrossRefGoogle Scholar
  58. Singla M, Patanjali PK (2013) Phase behaviour of neem oil based microemulsion formulations. Ind Crops Prod 44:421–426. doi: 10.1016/j.indcrop.2012.10.016 CrossRefGoogle Scholar
  59. Song S, Liu X, Jiang J, Qian Y, Zhang N, Wu Q (2009) Stability of triazophos in self-nanoemulsifying pesticide delivery system. Colloids Surf, A 350(1–3):57–62. doi: 10.1016/j.colsurfa.2009.08.034 CrossRefGoogle Scholar
  60. Steinrücken H, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94(4):1207–1212CrossRefGoogle Scholar
  61. Talegaonkar S, Azeem A, Ahmad FJ, Khar RK, Pathan SA, Khan ZI (2008) Microemulsions: a novel approach to enhanced drug delivery. Recent Pat Drug Delivery Formulation 2(3):238–257CrossRefGoogle Scholar
  62. Tamhane VA, Chougule NP, Giri AP, Dixit AR, Sainani MN, Gupta VS (2005) In vivo and in vitro effect of Capsicum annum proteinase inhibitors on Helicoverpa armigera gut proteinases. Biochimica et Biophysica Acta (BBA)—General Subjects 1722(2):156–167. doi: 10.1016/j.bbagen.2004.12.017 Google Scholar
  63. Tamhane VA, Dhaware DG, Khandelwal N, Giri AP, Panchagnula V (2012) Enhanced permeation, leaf retention and plant protease inhibitor activity with bicontinuous microemulsions. J Colloid Interface SciGoogle Scholar
  64. Tomlin CDS (2000) The pesticide manual. BCPC, FarnhamGoogle Scholar
  65. Trongtokit Y, Rongsriyam Y, Komalamisra N, Apiwathnasorn C (2005) Comparative repellency of 38 essential oils against mosquito bites. Phytotherapy Res 19(4):303–309. doi: 10.1002/ptr.1637 CrossRefGoogle Scholar
  66. Tuffi Santos LD, Meira RMSA, Ferreira FA, Sant’Anna-Santos BF, Ferreira LR (2007) Morphological responses of different eucalypt clones submitted to glyphosate drift. Environ Exp Bot 59(1):11–20CrossRefGoogle Scholar
  67. USEPA-OPP (2009) Cold Pressed Neem Oil PC Code 025006. U.S. Environmental Protection Agency Office of Pesticide Programs. Accessed 5 June 2013
  68. Vadillo DC, Soucemarianadin A, Delattre C, Roux DCD (2009) Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces. Phys Fluids 21(12):122002–122008CrossRefGoogle Scholar
  69. Wang C, Liu Z (2007) Foliar uptake of pesticides—present status and future challenge. Pestic Biochem Physiol 87(1):1–8CrossRefGoogle Scholar
  70. Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314(1):230–235CrossRefGoogle Scholar
  71. Wheeler GS, Slansky F, Yu SJ (2001) Food consumption, utilization and detoxification enzyme activity of larvae of three polyphagous noctuid moth species when fed the botanical insecticide rotenone. Entomol Exp Appl 98(2):225–239. doi: 10.1046/j.1570-7458.2001.00778.x CrossRefGoogle Scholar
  72. Yin Y-H, Guo Q-M, Han Y, Wang L-J, Wan S-Q (2012) Preparation, characterization and nematicidal activity of lansiumamide B nano-capsules. J Integr Agric 11(7):1151–1158CrossRefGoogle Scholar
  73. Zhang L, Han J-J, Li J-J, Liu T-Q (2013) Properties and spreading kinetics of water-based cypermethrin microemulsions. Acta Phys Chim Sin 29(2):346–350Google Scholar
  74. Zhu Y, An X, Li S, Yu S (2009) Nanoencapsulation of β-cypermethrin by complex coacervation in a microemulsion. J Surfactants Deterg 12(4):305–311CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Arnab De
    • 1
  • Rituparna Bose
    • 2
  • Ajeet Kumar
    • 3
  • Subho Mozumdar
    • 3
  1. 1.Department of ImmunologyColumbia UniversityNew YorkUSA
  2. 2.Department of Earth and Environmental ScienceThe City University of New YorkNew YorkUSA
  3. 3.Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations