Nanoparticulate Delivery Systems

  • Arnab De
  • Rituparna Bose
  • Ajeet Kumar
  • Subho Mozumdar
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


A nanoparticulate system, typically, comprises particles or droplets in the submicron range, i.e., below 1 μm, in an aqueous suspension or emulsion, respectively. This small size of the inner phase gives such a system unique properties in terms of appearance and application. The particles are too small for sedimentation, and they are held in suspension by the Brownian motion of the water molecules. They have a large overall surface area, and their dispersions provide a high solid content at low viscosity.


Supercritical Fluid Emulsion Polymerization Polymeric Micelle Solid Lipid Nanoparticle Interfacial Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE (2006) Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release 116(2):150–158Google Scholar
  2. Al Khouri Fallouh N, Roblot-Treupel L, Fessi H, Devissaguet JP, Puisieux F (1986) Development of a new process for the manufacture of polyisobutylcyanoacrylate nanocapsules. Int J Pharm 28(2–3):125–132Google Scholar
  3. Allémann E, Gurny R, Doelker E (1992) Preparation of aqueous polymeric nanodispersions by a reversible salting-out process: influence of process parameters on particle size. Int J Pharm 87(1–3):247–253Google Scholar
  4. Assadullahi TP, Hider RC (1083) McAuley AJ (1991) Liposome formation from synthetic polyhydroxyl lipids. Biochim Biophys Acta (BBA): Lipids Lipid Metab 3:271–276Google Scholar
  5. Bae YH, Okano T, Kim SW (1991a) “On–off” thermocontrol of solute transport. I. Temperature dependence of swelling of N-isopropylacrylamide networks modified with hydrophobic components in water. Pharm Res 8(4):531–537Google Scholar
  6. Bae YH, Okano T, Kirn SW (1991b) “On–off” thermocontrol of solute transport. II. Solute release from thermosensitive hydrogels. Pharm Res 8(5):624–628Google Scholar
  7. Bao J, Zhang A (2004) Poly(methyl methacrylate) nanoparticles prepared through microwave emulsion polymerization. J Appl Polym Sci 93(6):2815–2820. doi: 10.1002/app.20758 Google Scholar
  8. Barichello JM, Morishita M, Takayama K, Nagai T (1999) Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 25(4):471–476. doi: 10.1081/DDC-100102197 Google Scholar
  9. Bharali DJ, Sahoo SK, Mozumdar S, Maitra A (2003) Cross-linked polyvinylpyrrolidone nanoparticles: a potential carrier for hydrophilic drugs. J Colloid Interface Sci 258(2):415–423Google Scholar
  10. Bianco A, Prato M (2003) Can carbon nanotubes be considered useful tools for biological applications? Adv Mater 15(20):1765–1768. doi: 10.1002/adma.200301646 Google Scholar
  11. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9(6):674–679. doi: 10.1016/j.cbpa.2005.10.005 Google Scholar
  12. Birrenbach G, Speiser PP (1976) Polymerized micelles and their use as adjuvants in immunology. J Pharm Sci 65(12):1763–1766Google Scholar
  13. Bivas-Benita M, Oudshoorn M, Romeijn S, van Meijgaarden K, Koerten H, van der Meulen H, Lambert G, Ottenhoff T, Benita S, Junginger H, Borchard G (2004) Cationic submicron emulsions for pulmonary DNA immunization. J Control Release 100(1):145–155. doi: 10.1016/j.jconrel.2004.08.008 Google Scholar
  14. Bouchemal K, Briançon S, Perrier E, Fessi H, Bonnet I, Zydowicz N (2004) Synthesis and characterization of polyurethane and poly(ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsification. Int J Pharm 269(1):89–100. doi: 10.1016/j.ijpharm.2003.09.025 Google Scholar
  15. Bunjes H, Westesen K, Koch MHJ (1996) Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int J Pharm 129(1–2):159–173. doi: 10.1016/0378-5173(95)04286-5 Google Scholar
  16. Caminade A-M, Turrin C-O, Majoral J-P (2008) Dendrimers and DNA: combinations of two special topologies for nanomaterials and biology. Chem: A Eur J 14(25):7422–7432. doi: 10.1002/chem.200800584 Google Scholar
  17. Chan H-K, Kwok PCL (2011) Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev 63(6):406–416. doi: 10.1016/j.addr.2011.03.011 Google Scholar
  18. Chernyak Y, Henon F, Harris RB, Gould RD, Franklin RK, Edwards JR, DeSimone JM, Carbonell RG (2001) Formation of perfluoropolyether coatings by the rapid expansion of supercritical solutions (RESS) process. Part 1: experimental results. Ind Eng Chem Res 40(26):6118–6126. doi: 10.1021/ie010267m Google Scholar
  19. Choi S-W, Kim J-H (2007) Design of surface-modified poly(d, l-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone. J Control Release 122(1):24–30. doi: 10.1016/j.jconrel.2007.06.003 Google Scholar
  20. Couvreur P, Kante B, Roland M, Guiot P, Bauduin P, Speiser P (1979) Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol 31(5):331–332Google Scholar
  21. Cristian C, Karol P (2009) Encyclopedia of nanoscience and nanotechnology, 2nd edn. CRC Press, FloridaGoogle Scholar
  22. Cui X, Zhong S, Wang H (2007) Emulsifier-free core–shell polyacrylate latex nanoparticles containing fluorine and silicon in shell. Polymer 48(25):7241–7248. doi: 10.1016/j.polymer.2007.10.019 Google Scholar
  23. Danielsson I, Lindman B (1981) The definition of microemulsion. Colloids Surf 3(4):391–392. doi: 10.1016/0166-6622(81)80064-9 Google Scholar
  24. Darwish IA, Uchegbu IF (1997) The evaluation of crown ether based niosomes as cation containing and cation sensitive drug delivery systems. Int J Pharm 159(2):207–213. doi: 10.1016/s0378-5173(97)00289-5 Google Scholar
  25. El-Shabouri M (2002) Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm 249(1–2):101–108. doi: 10.1016/s0378-5173(02)00461-1 Google Scholar
  26. Fang J-Y, Leu Y-L, Chang C–C, Lin C-H, Tsai Y-H (2004) Lipid nano/submicron emulsions as vehicles for topical flurbiprofen delivery. Drug Delivery 11(2):97–105. doi: 10.1080/10717540490280697 Google Scholar
  27. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55(1):R1–R4. doi: 10.1016/0378-5173(89)90281-0 Google Scholar
  28. Forssen E, Willis M (1998) Ligand-targeted liposomes. Adv Drug Deliv Rev 29(3):249–271. doi: 10.1016/s0169-409x(97)00083-5 Google Scholar
  29. Fukushima S, Kishimoto S, Takeuchi Y, Fukushima M (2000) Preparation and evaluation of o/w type emulsions containing antitumor prostaglandin. Adv Drug Deliv Rev 45(1):65–75. doi: 10.1016/s0169-409x(00)00101-0 Google Scholar
  30. Gabizon AA (1992) Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes. Cancer Res 52(4):891–896Google Scholar
  31. Gasco MR, Trotta M (1986) Nanoparticles from microemulsions. Int J Pharm 29(2–3):267–268Google Scholar
  32. Gaudin F, Sintes-Zydowicz N (2008) Core–shell biocompatible polyurethane nanocapsules obtained by interfacial step polymerisation in miniemulsion. Colloids Surf A: Physicochem Eng Aspects 331(1–2):133–142. doi: 10.1016/j.colsurfa.2008.07.028 Google Scholar
  33. Gianasi E, Cociancich F, Uchegbu IF, Florence AT, Duncan R (1997) Pharmaceutical and biological characterisation of a doxorubicin-polymer conjugate (PK1) entrapped in sorbitan monostearate Span 60 niosomes. Int J Pharm 148(2):139–148. doi: 10.1016/s0378-5173(96)04840-5 Google Scholar
  34. Gref R, Minamitake Y, Peracchia M, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263(5153):1600–1603. doi: 10.1126/science.8128245 Google Scholar
  35. Gref R, Minamitake Y, Peracchia MT, Domb A, Trubetskoy V, Torchilin V, Langer R (1997) Poly(ethylene glycol)-coated nanospheres: potential carriers for intravenous drug administration. Pharm Biotechnol 10:167–198Google Scholar
  36. Gurny R, Peppas NA, Harrington DD, Banker GS (1981) Development of biodegradable and injectable latices for controlled release of potent drugs. Drug Dev Ind Pharm 7(1):1–25. doi: 10.3109/03639048109055684 Google Scholar
  37. Hawker CJ, Frechet JMJ (1990) Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 112(21):7638–7647. doi: 10.1021/ja00177a027 Google Scholar
  38. Hecht S, Fréchet JMJ (2001) Dendritic encapsulation of function: applying nature’s site isolation principle from biomimetics to materials science. Angew Chem Int Ed 40(1):74–91. doi: 10.1002/1521-3773(20010105)40:1<74:aid-anie74>;2-c Google Scholar
  39. Hood E, Gonzalez M, Plaas A, Strom J, VanAuker M (2007) Immuno-targeting of nonionic surfactant vesicles to inflammation. Int J Pharm 339(1–2):222–230. doi: 10.1016/j.ijpharm.2006.12.048 Google Scholar
  40. Hornig S, Heinze T (2007) Nanoscale structures of dextran esters. Carbohydr Polym 68(2):280–286. doi: 10.1016/j.carbpol.2006.12.007 Google Scholar
  41. ICH-Guideline (2011) Impurities: guideline for residual solvents Q3C(R5). International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. Accessed 10 May 2013
  42. Jaiswal J, Kumar Gupta S, Kreuter J (2004) Preparation of biodegradable cyclosporine nanoparticles by high-pressure emulsification-solvent evaporation process. J Control Release 96(1):169–178. doi: 10.1016/j.jconrel.2004.01.017 Google Scholar
  43. Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47(1):83–97. doi: 10.1016/S0169-409X(00)00123-X Google Scholar
  44. Jansen JFGA, Meijer EW, de Brabander-van den Berg EMM (1995) The dendritic box: shape-selective liberation of encapsulated guests. J Am Chem Soc 117(15):4417–4418. doi: 10.1021/ja00120a032
  45. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5):1378–1383. doi: 10.1021/es048729l Google Scholar
  46. Kam NWS, Dai H (2005) Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127(16):6021–6026. doi: 10.1021/ja050062v Google Scholar
  47. Karode SK, Kulkarni SS, Suresh AK, Mashelkar RA (1998) New insights into kinetics and thermodynamics of interfacial polymerization. Chem Eng Sci 53(15):2649–2663. doi: 10.1016/s0009-2509(98)00083-9 Google Scholar
  48. Koosha F, Muller RH, Davis SS, Davies MC (1989) The surface chemical structure of poly(β-hydroxybutyrate) microparticles produced by solvent evaporation process. J Control Release 9(2):149–157. doi: 10.1016/0168-3659(89)90005-9 Google Scholar
  49. Kreuter J, Speiser PP (1976) New adjuvants on a polymethylmethacrylate base. Infect Immun 13(1):204–210Google Scholar
  50. Lamprecht A (2009) Nanotherapeutics: drug delivery concepts in nanoscience. Pan Stanford PublishingGoogle Scholar
  51. Legrand P, Barratt G, Mosqueira V, Fessi H, Devissaguet JP (1999) Polymeric nanocapsules as drug delivery systems, a review. STP Pharma Sci 9(5):411–418Google Scholar
  52. Leiza JR, Sudol ED, El-Aasser MS (1997) Preparation of high solids content poly(n-butyl acrylate) latexes through miniemulsion polymerization. J Appl Polym Sci 64(9):1797–1809. doi: 10.1002/(sici)1097-4628(19970531)64:9<1797:aid-app16>;2-v Google Scholar
  53. Lesieur S, Grabielle-Madelmont C, Paternostre M-T, Moreau J-M, Handjani-Vila R-M, Ollivon M (1990) Action of octylglucoside on non-ionic monoalkyl amphiphile-cholesterol vesicles: study of the solubilization mechanism. Chem Phys Lipids 56(2–3):109–121. doi: 10.1016/0009-3084(90)90094-8 Google Scholar
  54. Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65(3):259–269. doi: 10.1016/j.ejpb.2006.11.009 Google Scholar
  55. Liu M, Kono K, Fréchet JMJ (2000) Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. J Control Release 65(1–2):121–131. doi: 10.1016/s0168-3659(99)00245-x Google Scholar
  56. Liu M, Zhou Z, Wang X, Xu J, Yang K, Cui Q, Chen X, Cao M, Weng J, Zhang Q (2007) Formation of poly(l, d-lactide) spheres with controlled size by direct dialysis. Polymer 48(19):5767–5779. doi: 10.1016/j.polymer.2007.07.053 Google Scholar
  57. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60(15):1650–1662. doi: 10.1016/j.addr.2008.09.001 Google Scholar
  58. Loup C, Zanta M-A, Caminade A-M, Majoral J-P, Meunier B (1999) Preparation of water-soluble cationic phosphorus-containing dendrimers as DNA transfecting agents. Chem: A Eur J 5(12):3644–3650. doi: 10.1002/(sici)1521-3765(19991203)5:12<3644:aid-chem3644>;2-i Google Scholar
  59. Macías ER, Rodríguez-Guadarrama LA, Cisneros BA, Castañeda A, Mendizábal E, Puig JE (1995) Microemulsion polymerization of methyl methacrylate with the functional monomer N-methylolacrylamide. Colloids and Surf A: Physicochem Eng Aspects 103(1–2):119–126. doi: 10.1016/0927-7757(95)03209-v Google Scholar
  60. Mammen M, Choi S-K, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37(20):2754–2794. doi: 10.1002/(sici)1521-3773(19981102)37:20<2754:aid-anie2754>;2-3 Google Scholar
  61. Martin TJ, Procházka K, Munk P, Webber SE (1996) pH-dependent micellization of poly(2-vinylpyridine)-block-poly(ethylene oxide). Macromolecules 29(18):6071–6073. doi: 10.1021/ma960629f Google Scholar
  62. Marty JJ, Oppenheim RC, Speiser P (1978) Nanoparticles-a new colloidal drug delivery system. Pharm Acta Helv 53(1):17–23Google Scholar
  63. Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47(2–3):165–196. doi: 10.1016/s0169-409x(01)00105-3 Google Scholar
  64. Meng F, Engbers GHM, Feijen J (2005) Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. J Control Release 101(1–3):187–198. doi: 10.1016/j.jconrel.2004.09.026 Google Scholar
  65. Meziani MJ, Pathak P, Hurezeanu R, Thies MC, Enick RM, Sun Y-P (2004) Supercritical-fluid processing technique for nanoscale polymer particles. Angewandte Chemie Int Ed 43(6):704–707. doi: 10.1002/anie.200352834 Google Scholar
  66. Mitsukami Y, Donovan MS, Lowe AB, McCormick CL (2001) Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules 34(7):2248–2256. doi: 10.1021/ma0018087 Google Scholar
  67. Molpeceres J, Guzman M, Aberturas MR, Chacon M, Berges L (1996) Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement. J Pharm Sci 85(2):206–213. doi: 10.1021/js950164r Google Scholar
  68. Mouran D, Reimers J, Schork FJ (1996) Miniemulsion polymerization of methyl methacrylate with dodecyl mercaptan as cosurfactant. J Polym Sci Part A: Polym Chem 34(6):1073–1081. doi: 10.1002/(sici)1099-0518(19960430)34:6<1073:aid-pola16>;2-4 Google Scholar
  69. Muller RH, Mader K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177. doi: 10.1016/S0939-6411(00)00087-4 Google Scholar
  70. Müller RH, Radtke M, Wissing SA (2002) Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 242(1–2):121–128. doi: 10.1016/s0378-5173(02)00180-1 Google Scholar
  71. Muñoz-Bonilla A, van Herk AM, Heuts JPA (2010) Preparation of hairy particles and antifouling films using brush-type amphiphilic block copolymer surfactants in emulsion polymerization. Macromolecules 43(6):2721–2731. doi: 10.1021/ma9027257 Google Scholar
  72. Needham D, Dewhirst MW (2001) The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev 53(3):285–305. doi: 10.1016/s0169-409x(01)00233-2 Google Scholar
  73. Némati F, Dubernet C, Fessi H, Colin de Verdière A, Poupon MF, Puisieux F, Couvreur P (1996) Reversion of multidrug resistance using nanoparticles in vitro: Influence of the nature of the polymer. Int J Pharm 138(2):237–246. doi: 10.1016/0378-5173(96)04559-0 Google Scholar
  74. Nicolaos G, Crauste-Manciet S, Farinotti R, Brossard D (2003) Improvement of cefpodoxime proxetil oral absorption in rats by an oil-in-water submicron emulsion. Int J Pharm 263(1–2):165–171. doi: 10.1016/s0378-5173(03)00365-x Google Scholar
  75. Pan G, Shawer M, Øie S, Lu DR (2003) In vitro gene transfection in human glioma cells using a novel and less cytotoxic artificial lipoprotein delivery system. Pharm Res 20(5):738–744. doi: 10.1023/a:1023477317668 Google Scholar
  76. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360. doi: 10.1002/adma.200501612 Google Scholar
  77. Perez C, Sanchez A, Putnam D, Ting D, Langer R, Alonso MJ (2001) Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J Control Release 75(1–2):211–224. doi: 10.1016/s0168-3659(01)00397-2 Google Scholar
  78. Pietkiewicz J, Sznitowska M, Placzek M (2006) The expulsion of lipophilic drugs from the cores of solid lipid microspheres in diluted suspensions and in concentrates. Int J Pharm 310(1–2):64–71. doi: 10.1016/j.ijpharm.2005.11.038 Google Scholar
  79. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2(1):8–21. doi: 10.1016/j.nano.2005.12.003
  80. Polidori A, Pucci B, Riess JG, Zarif L, Pavia AA (1994) Synthesis of double-chain glycolipids derived from aspartic acid: preliminary investigation of their colloidal behavior. Tetrahedron Lett 35(18):2899–2902. doi: 10.1016/s0040-4039(00)76654-8 Google Scholar
  81. Prabaharan M, Mano JF (2005) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12(1):41–57Google Scholar
  82. Quintanar-Guerrero D, Allemann E, Doelker E, Fessi H (1998) Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm Res 15(7):1056–1062Google Scholar
  83. Quintanar-Guerrero D, Allemann E, Fessi H, Doelker E (1999) Pseudolatex preparation using a novel emulsion-diffusion process involving direct displacement of partially water-miscible solvents by distillation. Int J Pharm 188(2):155–164Google Scholar
  84. Rabinovich-Guilatt L, Couvreur P, Lambert G, Dubernet C (2004) Cationic vectors in ocular drug delivery. J Drug Target 12(9–10):623–633. doi: 10.1080/10611860400015910 Google Scholar
  85. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913. doi: 10.1016/j.progpolymsci.2011.01.001 Google Scholar
  86. Rijcken CJF, Soga O, Hennink WE, Nostrum CV (2007) Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery. J Control Release 120(3):131–148. doi: 10.1016/j.jconrel.2007.03.023 Google Scholar
  87. Samad A, Sultana Y, Aqil M (2007) Liposomal drug delivery systems: an update review. Curr Drug Deliv 4(4):297–305Google Scholar
  88. Sane A, Thies MC (2007) Effect of material properties and processing conditions on RESS of poly(l-lactide). J Supercrit Fluids 40(1):134–143. doi: 10.1016/j.supflu.2006.04.003 Google Scholar
  89. Scheffel U, Rhodes BA, Natarajan TK, Wagner HN Jr (1972) Albumin microspheres for study of the reticuloendothelial system. J Nucl Med 13(7):498–503Google Scholar
  90. Selvi BR, Jagadeesan D, Suma BS, Nagashankar G, Arif M, Balasubramanyam K, Eswaramoorthy M, Kundu TK (2008) Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett 8(10):3182–3188. doi: 10.1021/nl801503m Google Scholar
  91. Sheikh F, Barakat N, Kanjwal M, Aryal S, Khil M, Kim H-Y (2009) Novel self-assembled amphiphilic poly(ε-caprolactone)-grafted-poly(vinyl alcohol) nanoparticles: hydrophobic and hydrophilic drugs carrier nanoparticles. J Mater Sci Mater Med 20(3):821–831. doi: 10.1007/s10856-008-3637-5 Google Scholar
  92. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ (2005) Nano-emulsions. Curr Opin Colloid Interface Sci 10(3–4):102–110. doi: 10.1016/j.cocis.2005.06.004 Google Scholar
  93. Song X, Zhao Y, Wu W, Bi Y, Cai Z, Chen Q, Li Y, Hou S (2008) PLGA nanoparticles simultaneously loaded with vincristine sulfate and verapamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int J Pharm 350(1–2):320–329. doi: 10.1016/j.ijpharm.2007.08.034 Google Scholar
  94. Sosa N, Zaragoza EA, López RG, Peralta RD, Katime I, Becerra F, Mendizábal E, Puig JE (2000) Unusual free radical polymerization of vinyl acetate in anionic microemulsion media. Langmuir 16(8):3612–3619. doi: 10.1021/la991065m Google Scholar
  95. Soussan E, Cassel S, Blanzat M, Rico-Lattes I (2009) Drug delivery by soft matter: matrix and vesicular carriers. Angew Chem Int Ed Engl 48(2):274–288. doi: 10.1002/anie.200802453 Google Scholar
  96. Swarbrick J (2006) Encyclopedia of pharmaceutical technology. Informa Healthcare, New YorkGoogle Scholar
  97. Tabata Y, Ikada Y (1989) Protein precoating of polylactide microspheres containing a lipophilic immunopotentiator for enhancement of macrophage phagocytosis and activation. Pharm Res 6(4):296–301. doi: 10.1023/a:1015942306801 Google Scholar
  98. Tamilvanan S (2004) Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems. Prog Lipid Res 43(6):489–533Google Scholar
  99. Tamilvanan S, Schmidt S, Müller RH, Benita S (2005) In vitro adsorption of plasma proteins onto the surface (charges) modified-submicron emulsions for intravenous administration. Eur J Pharm Biopharm 59(1):1–7. doi: 10.1016/j.ejpb.2004.07.001 Google Scholar
  100. Tang MX, Szoka FC (1997) The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther 4(8):823–832. doi: 10.1038/ Google Scholar
  101. Tang MX, Redemann CT, Szoka FC (1996) In vitrogene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 7(6):703–714. doi: 10.1021/bc9600630 Google Scholar
  102. Teli KM, Mutalik S, Rajanikant GK (2010) Nanotechnology and nanomedicine: going small means aiming big. Curr Pharm Des 16(16):1882–1892. doi: 10.2174/138161210791208992 Google Scholar
  103. Tice TR, Gilley RM (1985) Preparation of injectable controlled-release microcapsules by a solvent-evaporation process. J Control Release 2:343–352. doi: 10.1016/0168-3659(85)90056-2 Google Scholar
  104. Tobío M, Gref R, Sánchez A, Langer R, Alonso MJ (1998) Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res 15(2):270–275. doi: 10.1023/a:1011922819926 Google Scholar
  105. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17(1):117–132Google Scholar
  106. Uchegbu IF, Vyas SP (1998) Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172(1–2):33–70. doi: 10.1016/s0378-5173(98)00169-0 Google Scholar
  107. Ueda M, Kreuter J (1997) Optimization of the preparation of loperamide-loaded poly (L-lactide) nanoparticles by high pressure emulsification-solvent evaporation. J Microencapsul 14(5):593–605. doi: 10.3109/02652049709006812 Google Scholar
  108. Westesen K, Siekmann B, Koch MHJ (1993) Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int J Pharm 93(1–3):189–199. doi: 10.1016/0378-5173(93)90177-h Google Scholar
  109. Wissing SA, Kayser O, Müller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56(9):1257–1272. doi: 10.1016/j.addr.2003.12.002 Google Scholar
  110. Wu H, Ramachandran C, Bielinska AU, Kingzett K, Sun R, Weiner ND, Roessler BJ (2001) Topical transfection using plasmid DNA in a water-in-oil nanoemulsion. Int J Pharm 221(1–2):23–34. doi: 10.1016/s0378-5173(01)00672-x Google Scholar
  111. Yoo HS, Oh JE, Lee KH, Park TG (1999) Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release. Pharm Res 16(7):1114–1118Google Scholar
  112. Yuk SH, Cho SH, Lee SH (1997) pH/temperature-responsive polymer composed of poly((N, N-dimethylamino)ethyl methacrylate-co-ethylacrylamide). Macromolecules 30(22):6856–6859. doi: 10.1021/ma970725w Google Scholar
  113. Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ, Labrude P, Vigneron C (1998) Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Release 50(1–3):31–40Google Scholar
  114. Zinselmeyer BH, Mackay SP, Schatzlein AG, Uchegbu IF (2002) The lower-generation polypropylenimine dendrimers are effective gene-transfer agents. Pharm Res 19(7):960–967Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Arnab De
    • 1
  • Rituparna Bose
    • 2
  • Ajeet Kumar
    • 3
  • Subho Mozumdar
    • 3
  1. 1.Department of ImmunologyColumbia UniversityNew YorkUSA
  2. 2.Department of Earth and Environmental ScienceThe City University of New YorkNew YorkUSA
  3. 3.Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations