Advertisement

Biofuels from Green Microalgae

  • P. Sharma
  • M. B. Khetmalas
  • G. D. Tandon
Chapter

Abstract

Increasing demands of fossil fuels and pollution caused by them run parallel to hinder the ecological balance leading to green house gases effect. Biofuel production from renewable feedstocks has become a prerequisite for nations worldwide. Microalgal biomass serves as a renewable and ecofriendly source of clean biofuel production for complete replacement of fossil fuels in the near future. The current review reveals the credits of algal technology in the current era of upcoming white biotechnology with reference to the biofuels production and the process and methodology of their generation from green microalgae. With the landmark advancements in phytoplankton area of research, the capital investment cost for green fuel production from microalgal feedstock would come down to competing prices to make clean fuel at commercial scale a reality.

Keywords

Algal Biomass Biofuel Production Supercritical Fluid Extraction Bubble Column Microalgal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685PubMedCrossRefGoogle Scholar
  2. Al-Qasmi M, Raut N, Talebi S, Al-Rajhi S, Al-Barwani T (2012) A review of effect of light on microalgae growth. In: Proceedings of the world congress on engineering, vol I, WCE 2012, London, UK, July 4–6Google Scholar
  3. Andersen R (2005) Algal culturing techniques, 1st edn. Academic Press/Elsevier, San Diego, p 596. ISBN 0-12-088426-7Google Scholar
  4. Barbosa B, Albrecht M, Wijffels R (2003) Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnol Bioeng 83:112–120PubMedCrossRefGoogle Scholar
  5. Barclay WR, Meager KM, Abril JR (1994) Heterotrophic production of long chain omega-3-fatty acids utilising algae and algae-like microorganisms. J Appl Phycol 6(2):123–129CrossRefGoogle Scholar
  6. Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, CambridgeGoogle Scholar
  7. Behrens PW, Kyle DJ (1996) Microalgae as a source of fatty acids. J Food Lipid 3:259–272CrossRefGoogle Scholar
  8. Benemann JR, Oswald WJ (1996) Systems and economic analysis of microalgae pond for conversion of carbon dioxide to biomass (Final report: Grant No. DE-FG22-93PC93204). Pittsburgh Energy Technology Center, Pittsburgh, PA, US Department of EnergyGoogle Scholar
  9. Berzin I (2005) Photobioreactors and process for biomass production and mitigation of pollutants in flue gases. United States Patent Application. Pub No: US2005/0260553 A1, USA, PublicationGoogle Scholar
  10. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar
  11. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321CrossRefGoogle Scholar
  12. Brennan L, Owende P (2009) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. doi: 10.1016/j.rser.2009.10.009 Google Scholar
  13. Campbell MN (2008) Algae as a renewable source for liquid fuel. Guelph Eng J 1:2–7Google Scholar
  14. Chanakya HN, Mahapatra DM, Ravi S, Chauhan VS, Abitha R (2012) Sustainability of large-scale algal biofuel production in India. J Indian Inst Sci 92(1):63–98Google Scholar
  15. Chen YH, Walker TH (2011) Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude Glycerol. Biotechnol Lett. doi: 10.1007/s10529-011-0672-y Google Scholar
  16. Chen P, Min M, Chen Y, Wang L, Li Y et al (2009) Review of the biological and engineering aspects of algae to fuels approach. Int J Agric Biol Eng 2(4):1–30Google Scholar
  17. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(2007):294–306PubMedCrossRefGoogle Scholar
  18. Chu WL, Phang SM, Goh SH (1996) Environmental effects on growth and biochemical composition of Nitzschia inconspicua Grunow. J Appl Phycol 8:389–396CrossRefGoogle Scholar
  19. Clark GJ, Langley D, Bushell ME (1995) Oxygen limitation can induce microbial secondary metabolite formation: investigations with miniature electrodes in shaker and bioreactor culture. Microbiology 141:663–669CrossRefGoogle Scholar
  20. Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Purif Rev 38:291–325CrossRefGoogle Scholar
  21. Day JG, Tsavalos AJ (1996) An investigation of the heterotrophic culture of the green alga Tetraselmis. J Appl Phycol 8(1):73–77CrossRefGoogle Scholar
  22. Dayananda C, Sarada R, Usha Rani M (2007) Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenergy 31:87–93CrossRefGoogle Scholar
  23. Fang X, Wei C, Zhao-Ling C, Fan O (2004) Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J Appl Phycol 16:499–503CrossRefGoogle Scholar
  24. Frac M, Tys SJ, Tys J (2010) Microalgae for biofuels production and environmental applications: a review. Afr J Biotechnol 9(54):9227–9236Google Scholar
  25. Fritsch FE (1945) The structure and reproduction of the algae, vol 2. Cambridge University Press, CambridgeGoogle Scholar
  26. Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M et al (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18:506–511PubMedCrossRefGoogle Scholar
  27. Golueke CG, Oswald WJ (1965) Harvesting and processing sewage-grown planktonic algae. J Water Pollut Control Fed 37:471–498Google Scholar
  28. Gouveia L (2011) Microalgae as a feedstock for biofuels. Springer briefs in microbiology. doi: 10.1007/978-3-642-17997-6_1
  29. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784PubMedCentralPubMedCrossRefGoogle Scholar
  30. Harun R, Jason WS, Cherrington T, Danquah MK (2011) Exploring alkaline pretreatment of microalgal biomass for bioethanol production. Appl Energy 88(10):3464–3467CrossRefGoogle Scholar
  31. Heasman M, Diemar J, Oconnor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs-a summary. Aquacult Res 31(8–9):637–659CrossRefGoogle Scholar
  32. Hu Q, Gutterman H, Richmond A (1996) A flat incline, modular photobioreactor (FIMP) for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60PubMedCrossRefGoogle Scholar
  33. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639PubMedCrossRefGoogle Scholar
  34. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and microalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193PubMedCrossRefGoogle Scholar
  35. Kanda H, Li P (2011) Simple extraction method of green crude from natural blue-green microalgae by dimethyl ether: extraction efficiency on several species compared to the Bligh-Dyer’s method. World Renewable Energy Congress, Sweden, 8–11 May 2011Google Scholar
  36. Karthikeyan S (2012) A critical review: microalgae as a renewable source for biofuel production. Int J Eng Res Technol (IJERT) 1:4Google Scholar
  37. Lakaniemi AM, Hulatt CJ, Thomas DN, Tuovinen OH, Puhakka JA (2011) Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnology 4:34Google Scholar
  38. Lee YK, Low CS (1991) Effect of photobioreactor inclination on the biomass production of an outdoor algal culture. Biotechnol Bioeng 38:995–1000PubMedCrossRefGoogle Scholar
  39. Lee YK, Ding SY, Low CS, Chang YC, Forday WL, Chew PC (1995) Design and performance of an α-type tubular photobioreactor for mass cultivation of microalgae. J Appl Phycol 7:47–51CrossRefGoogle Scholar
  40. Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98(4):764–771PubMedCrossRefGoogle Scholar
  41. Li Y, Horsman M, Wu N, Lan CQ, Calero ND (2008) Articles: biocatalysts and bioreactor design. Biotechnol Prog 24:815–820PubMedGoogle Scholar
  42. Makarevičienė V, Andrulevičiūtė V, Skorupskaitė V, Kasperovičienė J (2011) Environmental research. Eng Manage 3(57):21–27Google Scholar
  43. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232CrossRefGoogle Scholar
  44. Mercer P, Armenta RE (2011) Developments in oil extraction from microalgae. Eur J Lipid Sci Technol. doi: 10.1002/ejlt.201000455 Google Scholar
  45. Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846PubMedCrossRefGoogle Scholar
  46. Miranda JR, Passarinho PC, Gouveia L (2012) Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour Technol 104:342–348PubMedCrossRefGoogle Scholar
  47. Mohan D, Pittman CU, Steele HP (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889CrossRefGoogle Scholar
  48. Molina E, Fernandez J, Fernandez AC, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92(2):113–131PubMedCrossRefGoogle Scholar
  49. Nagle N, Lemke P (1990) Production of methyl ester fuel from microalgae. Appl Biochem Biotechnol 24–25(1):355–361CrossRefGoogle Scholar
  50. Ngangkham M, Ratha SK, Prasanna R, Saxena AK, Dhar DW et al (2012) Biochemical modulation of growth, lipid quality and productivity in mixotrophic cultures of Chlorella sorokiniana. Springer Plus 1:33PubMedCrossRefGoogle Scholar
  51. Radakovits R, Jinkerson R, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):486–501PubMedCentralPubMedCrossRefGoogle Scholar
  52. Ramasamy Sakthivel R, Sanniyasi Elumalai S, Arif MM (2011) Microalgae lipid research, past, present: a critical review for biodiesel production, in the future. J Exp Sci 2(10):29–49Google Scholar
  53. Reda AI, Shanab A, Jeon BH, Song H, Kim Y, Hwang JH (2010) Algae-biofuel: potential use as sustainable alternative green energy. Online J Power Energy Eng 1(1):4–6Google Scholar
  54. Round FE (1984) The ecology of algae. Cambridge University Press, Cambridge. ISBN-10: 0521269067Google Scholar
  55. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43. doi: 10.1007/s12155-008-9008-8 CrossRefGoogle Scholar
  56. Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553CrossRefGoogle Scholar
  57. Sharma P, Tandon GD, Khetmalas MB (2013) Total biomass utilization of Spirogyra singularis for renewable biofuel production. IJBPAS 2(1):138–148Google Scholar
  58. Snow AA, Smith VH (2012) Genetically engineered algae for biofuels: a key role for ecologists. BioScience 62:765–768CrossRefGoogle Scholar
  59. Tan CK, Johns MR (1996) Screening of diatoms for heterotrophic eicosapentaenoic acid production. J Appl Phycol 8:59–64CrossRefGoogle Scholar
  60. Theriault RI (1965) Heterotrophic growth and production of xanthophylls by Chlorella pyrenoidosa. Appl Microbiol 13:402–416PubMedCentralPubMedGoogle Scholar
  61. Tilton RC, Murphy J, Dixon JK (1972) The flocculation of algae with synthetic polymeric flocculants. Water Res 6:155–164CrossRefGoogle Scholar
  62. Tredici MR, Carlozzi P, Chini Zittelli G, Materassi R (1991) A vertical alveolar panel(VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresour Technol 38:153–159CrossRefGoogle Scholar
  63. Velichkova K, Sirakov I, Georgiev G (2012) Cultivation of Botryococcus braunii strain in relation of its use for biodiesel production. J BioSci Biotechnol 157162. Special Edition,“Biotechnologies” National Youth Conference “Biological sciences for a better future”, Plovdiv, October 19–20Google Scholar
  64. Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718PubMedCrossRefGoogle Scholar
  65. Wang ST, Pan YY, Liu CC, Chuang LT, Chen CN (2011) Characterization of a green microalga UTEX 2219–4: effects of photosynthesis and osmotic stress on oil body formation. Bot Stud 52:305–312Google Scholar
  66. Wen ZY, Chen F (2000) Production potential of eicosapentaenoic acid by the diatom Nitzschia laevis. Biotechnol Lett 22(9):727–733CrossRefGoogle Scholar
  67. Xu H, Miao X, Wu Q (2004) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507CrossRefGoogle Scholar
  68. Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21(1):127–133CrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.Dr. D. Y. Patil Biotechnology & Bioinformatics InstituteDr. D. Y. Patil UniversityPuneIndia

Personalised recommendations