Skip to main content

Molecular Strategies for Improving Mineral Density and Bioavailability in Rice

  • Chapter
  • First Online:
Biotechnology: Prospects and Applications

Abstract

Globally, micronutrient malnutrition has become a major health problem affecting over three billion people. Of the various micronutrients, problems (anemia, mental retardation, stunted growth, decreased immune function, and increased mortality) resulting from iron and zinc deficiencies are most prevalent and devastating in the developing countries. Rice serves as a staple food for more than half of the world population, but it has insufficient levels of the key micronutrients (Fe and Zn) to meet daily dietary requirements. Biofortification, which refers to the breeding of plants/crops with high bioavailable micronutrient content using conventional breeding, genetic engineering, and molecular and genomic approaches, has the potential to provide coverage for remote rural populations, where supplementation and fortification programs may not reach, and it inherently targets the poor who consume high levels of staple food and little else. Biofortified rice can be an effective solution to combat micronutrient malnutrition in developing countries with limited resources. The facts that substantial genetic variation for Fe and Zn contents exists in rice and that traits for high nutrient content can be combined with superior agronomic characteristics and high yield have allowed many scientists to use conventional breeding approaches to develop micronutrient-rich rice genotypes. Alternatively, genomic, transformation, and molecular tools have been used to improve our understanding of factors regulating micronutrient contents/bioavailability and rapid discovery of genes involved in iron uptake and storage in target tissues and consequently to develop novel high-Fe and/or high-Zn transgenic plants in rice. At CCS Haryana Agricultural University, Hisar, we have assessed variability for iron and zinc in a collection of 220 rice genotypes and identified several iron- and zinc-rich genotypes which have been used subsequently to raise mapping population and used for identification of QTLs for minerals in brown rice. Material is being used to select mineral-rich high-yielding rice genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anuradha K, Agarwal S, Batchu AK, Babu AP, Swamy BPM, Longvah T, Sarla N (2012) Evaluating rice germplasm for iron and zinc concentration in brown rice and seed dimensions. J Phytol 4(1):19–25

    CAS  Google Scholar 

  • Ballot D, Baynes RD, Bothwell TH, Gillooly M, Macfarlane BJ, Macphail AP, Lyons G, Derman DP, Bezwoda WR, Torrance JD, Bothwell JE, Mayet F (1987) The effects of fruit juices and fruits on the absorption of iron from a rice meal. Br J Nutr 57:331–343

    Article  CAS  PubMed  Google Scholar 

  • Banziger M, Long J (2000) The potential of increasing the iron and zinc density of maize through plant breeding. Food Nutr Bull 21:397–400

    Google Scholar 

  • Bhullar NK, Gruissem W (2013) Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnol Adv 31:50–57

    Article  CAS  PubMed  Google Scholar 

  • Bohn L, Meyers AS, Rasmussen K (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9:165–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bouis HE (2002) Plant breeding: a new tool for fighting micronutrient malnutrition. J Nutr 132:491S–494S

    CAS  PubMed  Google Scholar 

  • Bouis HE, Chassy B, Ochanda JO (2003) Genetically modified food crops and their contribution to human nutrition and food quality. Trends Food Sci Technol 14:191–209

    Article  CAS  Google Scholar 

  • Brar B, Jain S, Singh R, Jain RK (2011) Genetic diversity for iron and zinc contents in a collection of 220 rice (Oryza sativa L.) genotypes. Indian J Genet 71(1):67–73

    Google Scholar 

  • Brinch-Pedersen H, Sorensen LD, Holm PB (2002) Engineering crop plants: getting a handle on phosphate. Trends Plant Sci 7:118–125

    Article  CAS  PubMed  Google Scholar 

  • Brinch-Pedersen H, Borg S, Tauris B, Holm PB (2007) Molecular genetic approaches to increasing mineral availability and vitamin content of cereals. J Cereal Sci 46:308–326

    Article  CAS  Google Scholar 

  • Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot 53:1677–1682

    Article  CAS  PubMed  Google Scholar 

  • Chandel G, Samuel P, Dubey M, Meena R (2011) In silico expression analysis of QTL specific candidate genes for grain micronutrient (Fe/Zn) content using ESTs and MPSS signature analysis in rice (Oryza sativa L.). J Plant Genet Transgenic 2(1):11–22

    Google Scholar 

  • Chen H, Siebenmorgen TJ (1997) Effect of rice thickness in degree of milling and associated optical measurements. Cereal Chem 74:821–825

    Article  CAS  Google Scholar 

  • Chen H, Siebenmorgen TJ, Griffin K (1998) Quality characteristics of long-grain rice milled in two commercial systems. Cereal Chem 75:560–565

    Article  CAS  Google Scholar 

  • Cheng L, Wang F, Shou H, Huang F, Zheng L, He F, Li J, Zhao FJ, Ueno D, Ma JF, Wu P (2007) Mutation in nicotianamine aminotransferase stimulated the Fe(II) acquisition system and led to iron accumulation in rice. Plant Physiol 145:1647–1657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean ML (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    Article  CAS  PubMed  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93:5624–5628

    Article  CAS  PubMed  Google Scholar 

  • Frossard E, Bucher M, Mächler F, Mozafar A, Hurrell R (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric 80:861–879

    Article  CAS  Google Scholar 

  • Galera SG, Rojas E, Sudhakar D, Zhu C, Pelacho AM, Capell T, Christou P (2010) Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res 19:165–180

    Article  Google Scholar 

  • Garcia-Casal MN, Layrisse M, Solano L, Baron MA, Arguello F, Llovera D, Ramirez J, Leets I, Tropper E (1998) Vitamin A and beta-carotene can improve non-heme iron absorption from rice, wheat and corn by humans. J Nutr 128:646–650

    CAS  PubMed  Google Scholar 

  • Garcia-Oliveira AL, Tan L, Fu Y, Sun C (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Plant Biol 51(1):84–92

    Article  CAS  Google Scholar 

  • Gibson GR, Beatty ER, Wang X, Cummings JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108:975–982

    Article  CAS  PubMed  Google Scholar 

  • Gillooly M, Bothwell TH, Torrance JD, Macphail AP, Derman DP, Bezwoda WR, Mills W, Charlton RW, Mayet F (1983) The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables. Br J Nutr 49:331–342

    Article  CAS  PubMed  Google Scholar 

  • Goto F, Yoshihara T (2001) Improvement of micronutrient contents by genetic engineering – development of high iron content crops. Plant Biotechnol 18:7–15

    Article  CAS  Google Scholar 

  • Goto FT, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean Ferritin gene. Nat Biotechnol 17:282–286

    Article  CAS  PubMed  Google Scholar 

  • Gowda SJM, Randhawa GJ, Bisht IS, Firke PK, Singh AK, Abraham Z, Dhillon BS (2012) Morpho-agronomic and simple sequence repeat-based diversity in colored rice (Oryza sativa L.) germplasm from peninsular India. Genet Resour Crop Evol 59:179–189

    Article  Google Scholar 

  • Graham RD, Senadhira D, Beebe S, Iglesias C, Monasterio I (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Res 60:57–80

    Article  Google Scholar 

  • Gregorio GB (2002) Progress in breeding for trace elements in staple crops. J Nutr 132:500S–502S

    PubMed  Google Scholar 

  • Gregorio GB, Senadhira D, Htut T, Graham RD (1999) Improving iron and zinc value of rice for human nutrients. Agric Dev 23(9):68–87

    Google Scholar 

  • Gregorio GB, Senadhira D, Htut T, Graham RD (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21:382–386

    Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochem Biophys Acta 1763:595–608

    Article  CAS  PubMed  Google Scholar 

  • Guerinot ML (2007) It’s elementary: enhancing Fe3+ reduction improves rice yields. Proc Natl Acad Sci USA 104:7311–7312

    Article  CAS  PubMed  Google Scholar 

  • Gura T (1999) New genes boost rice nutrients. Science 285:994–995

    Article  CAS  PubMed  Google Scholar 

  • Guttieri M, Bowen D, Dorsch JA, Raboy V, Souza E (2003) Identification and characterization of a low phytic acid wheat. Crop Sci 44:418–424

    Article  Google Scholar 

  • Harper JF, Surowy TK, Sussman MR (1989) Molecular cloning and sequence of cDNA encoding the plasma membrane proton pump (H+-ATPase) of Arabidopsis thaliana. Proc Natl Acad Sci USA 86:1234–1238

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366–381

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru Y, Kim S, Tsukamoto T, Oki H, Kobayashi T, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc Natl Acad Sci USA 104:7373–7378

    Article  CAS  PubMed  Google Scholar 

  • Islam FMA, Basford KE, Jara C, Redden RJ, Beebe SE (2002) Seed compositional and disease resistance differences among gene pools in cultivated common bean. Genet Resour Crop Evol 49:285–293. doi:10.1023/A:1015510428026

    Article  Google Scholar 

  • Johnson AAT, Kyriacou B, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS ONE 6(9):e24476. doi:10.1371/journal.pone.0024476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaiyang L, Lanzhi L, Zheng X, Zhihong T, Zhonglt H (2008) Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. Indian Acad Sci 87:305–310

    Google Scholar 

  • Khush GS, Brar DS (2002) Biotechnology for rice breeding: progress and impact. In: Sustainable rice production for food security. Proceedings of the 20th session of the international rice commission, Bangkok, Thailand, 23–26 July 2002

    Google Scholar 

  • Kumar J, Chawla A, Kumar P, Jain RK (2012) Iron and zinc variability in twenty rice (Oryza sativa L.) genotypes. Ann Biol 28(2):90–92

    CAS  Google Scholar 

  • Kuwano M, Ohyama A, Tanaka Y, Mimura T, Takaiwa F, Yoshida KT (2006) Molecular breeding for transgenic rice with low-phytic-acid phenotype through manipulating myo-inositol 3-phosphate synthase gene. Mol Breed 18:263–272

    Article  CAS  Google Scholar 

  • Larson SR, Rutger JN, Young KA, Raboy V (2000) Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1mutation. Crop Sci 40:1397–1405

    Article  CAS  Google Scholar 

  • Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32:408–416

    Article  CAS  PubMed  Google Scholar 

  • Li ZK (2001) QTL mapping in rice: a few critical considerations. In: Brar DS, Hardy B, Khush GS (eds) Rice genetics IV. Science Publisher, Enfield

    Google Scholar 

  • Liu ZC, Yu SX (1997) Nutrition and food sanitation, 2nd edn. Demotic Sanitation Publisher, Beijing

    Google Scholar 

  • Lopez HW, Leenhardt F, Coudray C, Remesy C (2002) Minerals and phytic acid interactions: is it a real problem for human nutrition? Int J Food Sci Technol 37:727–739

    Article  CAS  Google Scholar 

  • Lu T, Huang X, Zhu C, Huang T, Zhao Q, Xie K (2008) RICD: a rice indica cDNA database resource for rice functional genomics. BMC Plant Biol 8:118

    Article  PubMed Central  PubMed  Google Scholar 

  • Lucca P, Hurell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392–397

    Article  CAS  Google Scholar 

  • Mares-Perlman JA, Subar AF, Block G, Greger JL, Luby MH (1995) Zinc intake and sources in the US adult population: 1976–1980. J Am Coll Nutr 14:349–357

    Article  CAS  PubMed  Google Scholar 

  • Maziya-Dixon B, Kling JG, Menkir A, Dixon A (2000) Genetic variation in total carotene, iron and zinc contents of maize and cassava genotypes. Food Nutr Bull 21:419–422

    Google Scholar 

  • Monasterio I, Graham RD (2000) Breeding for trace minerals in wheat. Food Nutr Bull 21:392–396

    Google Scholar 

  • Norton GJ, Deacon CM, Xiong L, Huang S, Meharg AA, Price AH (2010) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329:139–153

    Article  CAS  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Rachel DR (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  CAS  PubMed  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) Harvest Plus: breeding crops for better nutrition. Crop Sci 47(S3):S88–S105

    Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7(4):275–291

    Article  CAS  Google Scholar 

  • Puig S, Andres-Colas N, Garcia-Molina A, Penarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30:271–290

    Article  CAS  PubMed  Google Scholar 

  • Rabbani GH, Ali M (2009) New ideas and concepts, rice bran: a nutrient-dense mill-waste for human nutrition. The ORION Med J 32(3):694–701

    Google Scholar 

  • Raboy V (2001) Seeds for a better future: ‘low phytate’, grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6:458–462

    Article  CAS  PubMed  Google Scholar 

  • Raboy V (2002) Progress in breeding low phytate crops. J Nutr 132:503S–505S

    PubMed  Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    Article  CAS  PubMed  Google Scholar 

  • Scholz-Ahrens KE, Schrezenmeir J (2002) Inulin, oligofructose and mineral metabolism—experimental data and mechanism. Br J Nutr 87:S179–S186

    Article  CAS  PubMed  Google Scholar 

  • Sellappan K, Datta K, Parkhi V, Datta SK (2009) Rice caryopsis structure in relation to distribution of micronutrients (iron, zinc, β-carotene) of rice cultivars including transgenic indica rice. Plant Sci 177:557–562

    Article  CAS  Google Scholar 

  • Seymour J (1996) Hungry for a new revolution. New Sci 149(2023):32–37

    Google Scholar 

  • Shaw JG, Friedman JF (2011) Iron deficiency anemia: focus on infectious diseases in lesser developed countries. Anemia. Review Article 2011:10. doi:10.1155/2011/260380

  • Sperotto RA, Boffa T, Duartea GL, Santosb LS, Grusakc MA, Fett JP (2010) Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains. J Plant Physiol 167:1500–1506

    Article  CAS  PubMed  Google Scholar 

  • Stangoulis JCR, Huynh BL, Welch RM, Choi EY, Graham RD (2007) Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 154:289–294

    Article  Google Scholar 

  • Stein AJ, Sachdev HPS, Qaim M (2008) Genetic engineering for the poor: golden rice and public health in India. World Dev 3:144–158

    Article  Google Scholar 

  • Takahashi M (2003) Overcoming Fe deficiency by a transgenic approach in rice. Plant Cell Tissue Organ Cult 72:211–220

    Article  CAS  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang G, Hu Y, Yin S, Wang Y, Dallal GE, Grusak MA, Russell RM (2012) β-carotene in golden rice is as good as β-carotene in oil at providing vitamin A to children. Am J Clin Nutr 96:658–664

    Article  CAS  PubMed  Google Scholar 

  • The World Health Organization (WHO) (2011) Micronutrient deficiencies: iron deficiency anemia. Available from: http://www.who.int/nutrition/topics/ida/en/index.html

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant transporter gene family in Arabidopsis with homology to NRAMP genes. Proc Natl Acad Sci USA 97:4991–4996

    Article  CAS  PubMed  Google Scholar 

  • Thorup GL, Kearsey FD (2000) The principles of QTL analysis (a minimal mathematics approach). J Exp Bot 49:1619–1623

    Google Scholar 

  • Tuberosa R, Salvi S (2007) From QTLs to genes controlling root traits in maize: scale and complexity in plant systems research. Gene-Plant-Crop Relat 2:15–24

    Google Scholar 

  • Ullah AHJ, Mullaney EJ (1996) Disulfide bonds are necessary for structure and activity in Aspergillus ficuum phytase. Biochem Biophys Res Commun 227:311–317

    Article  CAS  PubMed  Google Scholar 

  • United Nations Children’s Fund (UNICEF) (2009) Vitamin A deficiency: the challenge. Available from: http://www.childinfo.org/vitamina.html

  • Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S, Margarida O, Goto F, Datta S (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378

    Article  CAS  Google Scholar 

  • Vasconcelos M, Eckert H, Arahana V, Graef G, Grusak MA, Clemente T (2006) Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. Planta 224:1116–1128

    Article  CAS  PubMed  Google Scholar 

  • Velu G, Rai KN, Muralidharan V, Kulkarni VN, Longvah T, Raveendran TS (2007) Prospects of breeding biofortified pearl millet with high grain iron and zinc content. Plant Breed 126:182–185

    Article  CAS  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  PubMed  Google Scholar 

  • Wirth J, Poletti S, Aeschlimann B, Yakandawala N, Drosse B, Osorio S (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol J 7:631–644

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Babili AS, Kloeti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P (2007) Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci 12:548–555, www.harvestplus.org. Accessed 24 July 2013

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajinder K. Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Jain, R.K., Kumar, J., Jain, S., Chowdhury, V.K. (2013). Molecular Strategies for Improving Mineral Density and Bioavailability in Rice. In: Salar, R., Gahlawat, S., Siwach, P., Duhan, J. (eds) Biotechnology: Prospects and Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1683-4_5

Download citation

Publish with us

Policies and ethics