Skip to main content

Starch: Its Functional, In Vitro Digestibility, Modification, and Applications

  • Chapter
  • First Online:
Biotechnology: Prospects and Applications

Abstract

Starch is a naturally occurring biopolymer widely available in nature. Amylose and amylopectin are two macromolecular components of starch granules. Starch can be characterized by using a variety of techniques including differential scanning calorimeter (DSC), rapid visco analyzer (RVA), rheometer, and X-ray diffraction. Native starches have limitations such as low shear resistance, thermal decomposition, and high tendency of retrogradation which limits their use in industrial food applications. These shortcomings can be easily overcome by starch modifications by a variety of physical, chemical, and enzymatic modifications. In recent years, glycemic index (GI) has become a potentially useful tool in planning diets for patients suffering from diabetes, dyslipidemia, cardiovascular disease, and even certain cancers. On the basis of digestibility, starches can be classified into readily digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS). The starches from different botanical vary in their RDS, SDS, and RS contents. SDS and RS contents of starches have a variety of health benefits and these can be increased by different methods. Apart from variety of food applications, starch also has huge usage in nonfood area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adebowale KO, Lawal OS (2003) Functional properties and retrogradation behavior of native and chemically modified starch of mucuna bean (Mucuna pruriens). J Sci Food Agric 83:1541–1546

    CAS  Google Scholar 

  • Adebowale KO, Henle T, Schwarzenbolz U, Doert T (2009) Modification and properties of African yam bean (Sphenostylis stenocarpa Hochst. Ex A. Rich.) Harms starch I: heat moisture treatments and annealing. Food Hydrocoll 23:1947–1957

    CAS  Google Scholar 

  • Agboola SO, Akimbala JO, Oguntimein GB (1991) Physicochemical and functional properties of low DS cassava starch acetates and citrates. Starch-Starke 43:62–66

    CAS  Google Scholar 

  • Atichokudomchai N, Varavinit S, Chinachoti P (2002) A study of annealing and freeze thaw stability of acid-modified tapioca starch by differential scanning calorimetry. Starch 54(8):343–349

    CAS  Google Scholar 

  • Atwell WA, Hood LF, Lineback DR, Varriano-marston E, Zobel HF (1988) The terminology and methodology associated with basic starch phenomena. Cereal Foods World 33:306–311

    Google Scholar 

  • Badenhuizen NP (1969) The biogenesis of starch granules in higher plants. Appleton Crofts, New York

    Google Scholar 

  • Baik MY, Kim KJ, Cheon KC, Ha YC, Kim WS (1997) Recrystallization kinetics and glass transition of rice starch gel system. J Agric Food Chem 45:4242–4248

    CAS  Google Scholar 

  • Behall KM, Scholfield DJ, Canary J (1988) Effect of starch structure on glucose and insulin responses in adults. Am J Clin Nutr 47:428–432

    CAS  PubMed  Google Scholar 

  • BeMiller JN (1997) Starch modification: challenges and prospects. Starch 49:127–131

    CAS  Google Scholar 

  • Biliaderis CG (1992) Characterisation of starch networks by small strain dynamic rheometry. In: Alexander RJ, Zobel HF (eds) Developments in carbohydrate chemistry. AAOCC, St Paul, pp 87–135

    Google Scholar 

  • Biliaderis CG, Page CM, Maurice TJ, Juliano BO (1986) Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch. J Agric Food Chem 34:6–14

    CAS  Google Scholar 

  • Bravo L, Englyst HN, Hudson HJ (1998) Nutritional evaluation of carbohydrates in the Spanish diet: non-starch polysaccharides and in vitro starch digestibility of breads and breakfast products. Food Res Int 31:129–135

    Google Scholar 

  • Brueckner J, Muschiolik G, Mieth G, Ackermann K (1987) DDR patent 250 048

    Google Scholar 

  • Chang YH, Lin JH, Chang SY (2006) Physicochemical properties of waxy and normal corn starches treated in different anhydrous alcohols with hydrochloric acid. Food Hydrocoll 20:332–339

    CAS  Google Scholar 

  • Chen JJ, Lai VMF, Lii C (2003) Effect of compositional and granular properties on the pasting viscosity of rice starch blends. Starch-Starke 55:203–212

    CAS  Google Scholar 

  • Chen L, Li X, Li L, Guo S (2007) Acetylated starch-based biodegradable materials with potential biomedical applications as drug delivery systems. Curr Appl Phys 7S1:e90–e93

    Google Scholar 

  • Choi HM, Yoo B (2008) Rheology of mixed system of sweet potato starch and galactomannans. Starch-Starke 60:263–269

    CAS  Google Scholar 

  • Chun SY, Yoo B (2007) Effect of molar substitution on rheological properties of hydroxypropylated rice starch pastes. Starch-Starke 59:334–341

    CAS  Google Scholar 

  • Chung HJ, Liu Q, Pauls KP, Fan MZ, Yada R (2008) In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Res Int 41:869–875

    CAS  Google Scholar 

  • Colonna P, Leloup V, Buleon A (1992) Limiting factors of starch hydrolysis. Eur J Clin Nutr 46:S17–S32

    PubMed  Google Scholar 

  • Cousidine DM (1982) Foods and food production encyclopedia. Wiley, New York, p 142

    Google Scholar 

  • Demos BP, Forrest JC, Grant AL, Judge MD, Chen LF (1994) Low-fat, no added salt in restructured beef steaks with various binders. J Muscles Foods 5:407–418

    Google Scholar 

  • Doublier JL, Llamas G, Meur ML (1987) A rheological investigation of the cereal starch pastes and gels: effect of pasting procedures. Carbohydr Polym 7:251–275

    Google Scholar 

  • Dreher ML, Berry JW, Dreher CJ (1984) Starch digestibility of foods: a nutritional perspective. Crit Rev Food Sci Nutr 20:47–71

    CAS  PubMed  Google Scholar 

  • Duxbury DD (1989) Modified starch functionalities-no chemicals or enzymes. Food Process 50:35–37

    Google Scholar 

  • Eliasson AC (1986) Viscoelastic behavior during the gelatinization of starch I. Comparison of wheat, maize, potato and waxy-barley starches. J Texture Stud 17:253–265

    CAS  Google Scholar 

  • Elomaa M, Asplund T, Soininen P, Laatikainen R, Peltonen S, Hyvarinen S (2004) Determination of the degree of substitution of acetylated starch by hydrolysis, 1H NMR and TGA/IR. Carbohydr Polym 57:261–267

    CAS  Google Scholar 

  • Englyst HN, Hudson GJ (1996) The classification and measurement of dietary carbohydrates. Food Chem 57:15–21

    CAS  Google Scholar 

  • Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fraction. Eur J Clin Nutr 46:S33–S50

    PubMed  Google Scholar 

  • Evans ID, Lips A (1992) Viscoelasticity of gelatinized starch dispersions. J Texture Stud 23:69–86

    Google Scholar 

  • Fannon JE, Hauber RJ, BeMiller JN (1992a) Surface pores of starch granules. Cereal Chem 69:284–288

    Google Scholar 

  • Fannon JE, Hauber RJ, BeMiller JN (1992b) In: Chanderasekaran R (ed) Use of low temperature scanning electron microscopy to examine starch granule structure and behaviour, vol 2, Frontiers in carbohydrate research. Elsevier Science, London, pp 1–23

    Google Scholar 

  • Fitt LE, Snyder EM (1984) Photomicrographs of Starches. In: Whistler RL (ed) Starch chemistry and technology. Academic, New York, pp 675–689

    Google Scholar 

  • Gallant DJ, Bouchet B, Buleon A, Perez S (1992) Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur J Clin Nutr 46:S3–S16

    PubMed  Google Scholar 

  • Garcia V, Colonna P, Lourdin D, Buleon A, Bizot H, Ollivon M (1996) Thermal transitions of cassava starch at intermediate water contents. J Therm Anal 47:1213–1228

    CAS  Google Scholar 

  • Gerard C, Colonna P, Buleon A, Planchot V (2001) Amylolysis of maize mutant starches. J Sci Food Agric 81:1281–1287

    CAS  Google Scholar 

  • Ghiasi K, Varriano-Marston K, Hoseney RC (1982) Gelatinization of wheat starch. II. Starch-surfactant interaction. Cereal Chem 59:86–88

    CAS  Google Scholar 

  • Gunaratne A, Hoover R (2002) Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydr Polym 49:425–437

    CAS  Google Scholar 

  • Harrison G, Franks GV, Tirtaatmadja V, Boger DV (1999) Suspension and polymers – common links in rheology. Korea-Aust Rheol J 3(11):197–218

    Google Scholar 

  • Hegedusic V (1992) Progress in food rheology. In: Konja G, Lovric T, Strucelj D, Ttipalo B (eds) Advances in food process engineering. Faculty of Food Technology and Biotechnology, Zagreb, pp 13–29

    Google Scholar 

  • Hermansson AM, Svegmark K (1996) Developments in the understanding of starch functionality. Trends Food Sci Technol 7:345–353

    CAS  Google Scholar 

  • Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267

    CAS  Google Scholar 

  • Hoover R, Sosulski FW (1985) Studies on the functional characteristics and digestibility of starches from Phaseolus vulgaris biotypes. Starch 37:181–191

    CAS  Google Scholar 

  • Hoover R, Zhou Y (2003) In vitro and in vivo hydrolysis of legumes starches by α-amylase and resistant starch formation in legumes- a review. Carbohydr Polym 54:401–417

    CAS  Google Scholar 

  • Huang J, Schols HA, Klaver R, Jin Z, Voragen AGJ (2007a) Acetyl substitution patterns of amylose and amylopectin populations in cowpea starch modified with acetic anhydride and vinyl acetate. Carbohydr Polym 67:542–550

    CAS  Google Scholar 

  • Huang J, Schols HA, Soest JJGV, Jin Z, Sulmann E, Voragen AGJ (2007b) Physicochemical properties and amylopectin chain profiles of cowpea, chickpea and yellow pea starches. Food Chem 101:1338–1345

    CAS  Google Scholar 

  • Inatsu O, Watanabe K, Maida I, Ito K, Osani SJ (1974) Studies to improve the quality of rice grown in Hokkaido. I. Amylose contents of different rice starches. J Jpn Soc Starch Sci 21:115–117

    Google Scholar 

  • Jacobs H, Eerlingen RC, Rouseu N, Colonna P, Delcour JA (1998) Acid hydrolysis of native and annealed wheat, potato and pea starches. DSC melting features and chain length distribution of lintnerized starches. Carbohydr Res 308(3/4):359–371

    CAS  Google Scholar 

  • Jane JL, Wong KS, McPherson AE (1997) Branch structure differences in starches of A and B types X-ray patterns revealed by their Naegli dextrins. Carbohydr Res 300:219–227

    CAS  Google Scholar 

  • Ji Y, Seetharaman K, Wong K, Pollak LM, Duvick S, Jane J, White PJ (2003) Thermal and structural properties of unusual starches from developmental corn lines. Carbohydr Polym 51:439–450

    CAS  Google Scholar 

  • Juliano BO, Bautista GM, Lugay JC, Reyes ACJ (1964) Studies on the physico-chemical properties of rice. J Agric Food Chem 12:131–134

    CAS  Google Scholar 

  • Karim AA, Norziah MH, Seow CC (2000) Methods for the study of starch retrogradation. Food Chem 71:9–36

    CAS  Google Scholar 

  • Kaur M, Singh N, Sandhu KS, Guraya HS (2004a) Physicochemical, morphological, thermal and rheological properties of starches separated from kernels of some Indian mango cultivars (Mangifera indica L.). Food Chem 85:131–140

    CAS  Google Scholar 

  • Kaur L, Singh N, Singh J (2004b) Factors influencing the properties of hydroxypropylated potato starches. Carbohydr Polym 55:211–223

    CAS  Google Scholar 

  • Kenyon MM (1995) Encapsulation and controlled release of food ingredients. In: Risck and Reineccius (ed) ACS symposium series 42: 590

    Google Scholar 

  • Kim HR, Hermansson AM, Eriksson CE (1992) Structural characteristics of hydroxypropyl potato starch granules depending on their molar substitution. Starch 44:111–116

    CAS  Google Scholar 

  • Krossmann J, Lloyd J (2000) Understanding and influencing starch biochemistry. Crit Rev Biochem Mol Biol 35:141–196

    Google Scholar 

  • Krueger BR, Knutson CA, Inglett GE, Walker CE (1987) A differential scanning calorimetry study on the effect of annealing on gelatinization behaviour of corn starch. J Food Sci 52:715–718

    CAS  Google Scholar 

  • Laurentin A, Cardenas M, Ruales J, Perez E, Tovar J (2003) Preparation of indigestible pyrodextrins from different starch sources. J Agric Food Chem 51:5510–5515

    CAS  PubMed  Google Scholar 

  • Lii CY, Tsai ML, Tseng KH (1996) Effect of amylose content on the rheological property of rice starch. Cereal Chem 73:415–420

    CAS  Google Scholar 

  • Lin JH, Chang YH (2006) Molecular degradation rate of rice and corn starches during acid–methanol treatment and its relation to the molecular structure of starch. J Agric Food Chem 54:5880–5886

    CAS  PubMed  Google Scholar 

  • Lin JH, Lee SY, Chang YH (2003) Effect of acid-alcohol treatment on the molecular structure and physicochemical properties of maize and potato starches. Carbohydr Polym 53:475–482

    CAS  Google Scholar 

  • Lin JH, Lii CY, Chang YH (2005) Change of granular and molecular structures of waxy maize and potato starches after treated in alcohols with or without hydrochloric acid. Carbohydr Polym 59:507–515

    CAS  Google Scholar 

  • Lindeboom N, Chang PR, Tyler RT (2004) Analytical biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch-Starke 56:89–99

    CAS  Google Scholar 

  • Maurer HW, Kearney RL (1998) Opportunities and challenges for starch in the paper industry. Starch-Starke 50:396–402

    CAS  Google Scholar 

  • Miles MJ, Morris VJ, Orford PD, Ring SG (1985) The roles of amylose and amylopectin in the retrogradation of starch. Carbohydr Res 135:271–281

    CAS  Google Scholar 

  • Mishra S, Rai T (2006) Morphology and functional properties of corn, potato and tapioca starches. Food Hydrocoll 20:557–566

    CAS  Google Scholar 

  • Moorthy SN (2002) Physicochemical and functional properties of tropical tuber starches: a review. Starch-Starke 54:559–592

    CAS  Google Scholar 

  • Moorthy SN, Larsson H, Eliasson AC (2008) Rheological characteristics of different tropical root starches. Starch-Starke 60:233–247

    CAS  Google Scholar 

  • Morrison WR, Karkalas J (1990) Starch. In: Day PM, Harborne JB (eds) Methods in plant biochemistry, vol 2. Academic Press, London

    Google Scholar 

  • Morrison WR, Milligan TP, Azudin MN (1984) A relationship between the amylose and lipids contents of starches from diploid cereals. J Cereal Sci 2:257–260

    CAS  Google Scholar 

  • Noel TR, Ring SG, Whittam MA (1993) Physical properties of starch products: structure and function. In: Dickinson E, Walstra P (eds) Food colloids and polymers: stability and mechanical properties. Royal Society of Chemistry, Cambridge, pp 126–137

    Google Scholar 

  • Nurul IM, Azemi BMNM, Manan DMA (1999) Rheological behaviour of sago (Metroxylon sagu) starch paste. Food Chem 64:501–505

    Google Scholar 

  • Paraskevopoulou A, Kiosseoglou V (1997) Texture profile analysis of heat-formed gels and cakes prepared with low cholesterol egg yolk concentrates. J Food Sci 62:208–211

    CAS  Google Scholar 

  • Park JT, Rollings JE (1994) Effects of substrate branching characteristics on kinetics of enzymatic depolymerization of mixed linear and branch polysaccharides: I. amylose/amylopectin a–amylolysis. Biotechnol Bioeng 44:792–800

    CAS  PubMed  Google Scholar 

  • Perera C, Hoover R, Martin AM (1997) The effect of hydroxypropylation on the structure and physicochemical properties of native, defatted and heat moisture treated potato starches. Food Res Int 30:235–247

    CAS  Google Scholar 

  • Qi X, Tester RF, Snape CE, Yuryev VP, Wasserman LA, Ansell R (2004) Molecular basis of the gelatinization and swelling characteristics of waxy barley starches grown in the same location during the same season. Part II. Crystallinity and gelatinization characteristics. J Cereal Sci 39:57–66

    CAS  Google Scholar 

  • Radley JA (1976) Industrial uses of starch and its derivatives. Applied Science Publishers, London

    Google Scholar 

  • Raina CS, Singh S, Bawa AS, Saxena DC (2006) Rheological properties of chemically modified rice starch model solutions. J Food Process Eng 29:134–148

    Google Scholar 

  • Ratnayake WS, Hoover R, Warkentin T (2002) Pea starch: composition, structure and properties – a review. Starch-Starke 54:217–234

    CAS  Google Scholar 

  • Reddy KR, Subramanian R, Ali SZ, Bhattacharya KR (1994) Viscoelastic properties of rice-flour pastes and their relationship to amylose content and rice quality. Cereal Chem 71:548–552

    CAS  Google Scholar 

  • Ring SG, Gee JM, Whittam M, Orford P, Johnson IT (1988) Resistant starch: its chemical form in foodstuffs and effect on digestibility in vitro. Food Chem 28:97–109

    CAS  Google Scholar 

  • Russel PL, Oliver G (1989) The effect of pH and NaCl content on starch gel ageing. A study by differential scanning calorimetry and rheology. J Cereal Sci 10:123–138

    Google Scholar 

  • Rutenberg MW, Solarek D (1984) Starch derivatives: production and uses. In: Whistler R, BeMiller JN, Paschall EF (eds) Starch: chemistry and technology. Academic Press, New York, pp 312–388

    Google Scholar 

  • Sandhu KS, Lim ST (2008a) Digestibility of legume starches as influenced by its physical and structural properties. Carbohydr Polym 71:245–252

    CAS  Google Scholar 

  • Sandhu KS, Lim ST (2008b) Structural characteristics and in vitro digestibility of mango kernel starches (Mangifera indica L.). Food Chem 107:92–97

    CAS  Google Scholar 

  • Sandhu KS, Singh N (2007) Some properties of corn starches II: physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chem 101:1499–1507

    CAS  Google Scholar 

  • Scallet BL, Sowell EA (1967) Production and use of hypochlorite-oxidized starches. In: Whistler RL, Paschall EF (eds) Starch chemistry and technology, vol 2. Academic, New York, pp 237–251

    Google Scholar 

  • Seetharaman K, Tziotis A, Borras F, White PJ, Ferrer M, Robutti J (2001) Thermal and functional characterization of starch from Argentinean corn. Cereal Chem 78:379–386

    CAS  Google Scholar 

  • Seib PA (1996) Starch chemistry and technology, Syllabus. Kansas State University, Manhattan

    Google Scholar 

  • Seow CC, Thevamalar K (1993) Internal plasticization of granular rice starch by hydroxypropylation: effects on phase transitions associated with gelatinization. Starch 45:85–88

    CAS  Google Scholar 

  • Shi X, BeMiller JN (2000) Effect of sulfate and citrate salts on derivatization of amylose and amylopectin during hydroxypropylation of corn starch. Carbohydr Polym 43:333–336

    CAS  Google Scholar 

  • Siddhuraju P, Becker K (2005) Nutritional and antinutritional composition, in vitro amino acid availability, starch digestibility and predicated gylcemic index of differentially processed mucuna bean (Mucuna pruriens var. utilis): an under-utilised legumes. Food Chem 91:275–286

    CAS  Google Scholar 

  • Singh N, Singh J, Kaur L, Sodhi NS, Gill BS (2003) Morphological, thermal and rheological properties of starches from different botanical sources: a review. Food Chem 81:219–231

    CAS  Google Scholar 

  • Singh N, Sandhu KS, Kaur N (2004a) Characterization of starches separated from Indian chickpea (Cicer arietinum L.) cultivars. J Food Eng 63:441–449

    Google Scholar 

  • Singh J, Kaur L, Singh N (2004b) Effect of acetylation on some properties of corn and potato starches. Starch 56:586–601

    CAS  Google Scholar 

  • Snow P, O’Dea K (1981) Factors affecting the rate of hydrolysis of starch in foods. Am J Clin Nutr 34:2721–2727

    CAS  PubMed  Google Scholar 

  • Spigno G, De Faveri DM (2004) Gelatinization kinetics of rice starch studied by non-isothermal calorimetric technique: influence of extraction method, water concentration and heating rate. J Food Eng 62:337–344

    Google Scholar 

  • Svegmark K, Hermansson AM (1990) Shear induced change in the viscoelastic behavior of heat-treated potato starch dispersion. Carbohydr Polym 13:29–45

    Google Scholar 

  • Svegmark K, Hermansson AM (1993) Microstructure and rheological properties of composites of potato starch granules and amylose: a comparison of observed and predicted structure. Food Struct 12:181–193

    CAS  Google Scholar 

  • Takashima H (2005) US patent 6:884 448

    Google Scholar 

  • Tester RF, Morrison WR (1990) Swelling and gelatinization of cereal starches. Cereal Chem 67:558–563

    CAS  Google Scholar 

  • Tester RF, Debon SJJ, Sommerville MD (2000) Annealing of maize starch. Carbohydr Polym 42(3):287–299

    CAS  Google Scholar 

  • Tharanathan RN, Mahadevamma S (2003) Grain legumes – a boon to human nutrition. Trends Food Sci Technol 14:507–518

    CAS  Google Scholar 

  • Thebaudin JY, Lefebvre AC, Doublier JT (1998) Rheology of starch pastes from starches of different origins: applications to starch-based sauces. Lebensm Wiss Technol 31:354–360

    CAS  Google Scholar 

  • Tovar J, Herrera E, Laurentin A, Melito C, Perez E (1999) In vitro digestibility of modified starches. In: Pandalai SG (ed) Recent research developments in agricultural and food chemistry, vol 3. Research Signpost Co, Trivandrum, pp 1–10

    Google Scholar 

  • Tsai ML, Li CF, Lii CY (1997) Effects of granular structure on the pasting behavior of starches. Cereal Chem 74:750–757

    CAS  Google Scholar 

  • Wootton M, Manatsathit A (1983) The influence of molar substitution on the water binding capacity of hydroxylpropyl maize starches. Starch-Starke 35:92–94

    CAS  Google Scholar 

  • Wu Y, Seib PA (1990) Acetylated and hydroxypropylated distarch phosphates from waxy barley: paste properties and freeze–thaw stability. Cereal Chem 67:202–208

    CAS  Google Scholar 

  • Wurzburg OB (1986) Converted starches. In: Wurzburg OB (ed) Modified starches: properties and uses. CRC Press, Boca Raton, pp 17–41

    Google Scholar 

  • Xu Y, Hanna MA (2005) Preparation and properties of biodegradable foams from starch acetate and poly (tetramethylene adipate-co-terephthalate). Carbohydr Polym 59:521–529

    CAS  Google Scholar 

  • Xu A, Seib PA (1997) Determination of the level and position of substitution in hydroxypropylated starch by high resolution 1H-NMR spectroscopy of alpha-limit dextrins. J Cereal Sci 25:17–26

    CAS  Google Scholar 

  • Yackel WC, Cox C (1992) Applications of starch-based fat replacers. Food Technol 46:146–148

    CAS  Google Scholar 

  • Yadav S, Khetarpaul N (1994) Indigenous legume fermentation: effect on some antinutrients and in vitro digestibility of starch and protein. Food Chem 50:403–406

    CAS  Google Scholar 

  • Zallie J (1988) Benefits of quick setting starches. Manuf Confect 66:41–43

    Google Scholar 

  • Zhang G, Ao Z, Hamaker BR (2006) Slow digestion property of native cereal starches. Biomacromolecules 7:3252–3258

    CAS  PubMed  Google Scholar 

  • Zobel HF (1988) Molecules to granules – a comprehensive starch review. Starch 40:44–50

    CAS  Google Scholar 

  • Zobel HF, Young SN, Rocca LA (1988) Starch gelatinization. An X-ray diffraction study. Cereal Chem 65:443–446

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawaljit Singh Sandhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Kaur, M., Sandhu, K.S. (2013). Starch: Its Functional, In Vitro Digestibility, Modification, and Applications. In: Salar, R., Gahlawat, S., Siwach, P., Duhan, J. (eds) Biotechnology: Prospects and Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1683-4_4

Download citation

Publish with us

Policies and ethics