Nitrite Biosensors: Analytical Tools for Determination of Toxicity Due to Presence of Nitrite Ions

  • V. Dhull
  • A. Gahlaut
  • A. Gothwal
  • J. S. Duhan
  • V. Hooda


The chapter reviews the current state of art in the field of nitrite sensors based on electrochemical transducers with their salient features and wide application in healthcare, food industry, environmental monitoring, etc. Increased anthropogenic activities, rased the concentration of nitrite to alarming situation, directly putting an adverse effect on environment and natural habitat, and is of serious health concern. The issue of nitrites toxicity led to the implementation of rules to restrict their level in drinking waters and foodstuffs. From the last 20 years, the growing need of portable tool for onsite nitrite analysis leads to outburst of numerous approaches for development of efficient nitrate biosensors. The present review provides the global perspective in regard to nitrate biosensors with diverse fabrication strategies and materials adopted. Use of different fabrication strategies, leading to improved performance of biosensors, is also discussed.


Glassy Carbon Electrode Nitrite Concentration Nitrite Reductase Electrochemical Biosensor Microbial Biosensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are thankful to Department of Science and Technology (DST), New Delhi, for providing JRF fellowship (INSPIRE) to first author. The authors are also thankful to UGC and DST New Delhi for providing financial assistance to Centre for Biotechnology, M D University, Rohtak (India).


  1. Almeida MG, Silveira CM, Moura JJG (2007) Biosensing nitrite using the system nitrite reductase/Nafion/methyl viologen-a voltammetric study. Biosens Bioelectron 22:2485–2492PubMedCrossRefGoogle Scholar
  2. Badea M, Amine A, Palleschi G, Moscone D, Volpe G, Curulli A (2001) New electrochemical sensors for detection of nitrites and nitrates. J Electroanal Chem 509:66–72CrossRefGoogle Scholar
  3. Biagiotti V, Valentini F, Tamburri E, Terranova ML, Moscone D, Palleschi G (2007) Synthesis and characterization of polymeric films and nanotubule nets used to assemble selective sensors for nitrite detection in drinking water. Sens Actuators B Chem 122:236–242CrossRefGoogle Scholar
  4. Chen H, Mousty C, Cosnier S, Silveira C, Moura JJG, Almeida MG (2007) Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH. Electrochem Commun 9:2240–2245CrossRefGoogle Scholar
  5. Chen H, Mousty C, Chen L, Cosnier S (2008) A new approach for nitrite determination based on a HRP/catalase biosensor. Mater Sci Eng 28:726–730CrossRefGoogle Scholar
  6. Chen Q, Ai S, Zhu X, Yin H, Ma Q, Qiu Y (2009) A nitrite biosensor based on the immobilization of Cytochrome c on multi-walled carbon nanotubes-PAMAM-chitosan nanocomposite modified glass carbon electrode. Biosens Bioelectron 24:2991–2996PubMedCrossRefGoogle Scholar
  7. Dutt J, Davis J (2002) Current strategies in nitrite detection and their application to field analysis. J Environ Monit 4:465–471PubMedCrossRefGoogle Scholar
  8. Dutton R (2004) Problems with volatile corrosion inhibitors in the metal finishing industry. Met Finish 102:12–15CrossRefGoogle Scholar
  9. Eguílaz M, Agüí L, Sedeño PY, Pingarrón JM (2010) A biosensor based on cytochrome c immobilization on a poly-3-methylthiophene/multi-walled carbon nanotubes hybrid-modified electrode. Application to the electrochemical determination of nitrite. J Electroanal Chem 644:30–35CrossRefGoogle Scholar
  10. Ensafi AA, Amini M (2010) A highly selective optical sensor for catalytic determination of ultra-trace amounts of nitrite in water and foods based on brilliant cresyl blue as a sensing reagent. Sens Actuators B Chem 147:61–66CrossRefGoogle Scholar
  11. Ensafi AA, Amini M (2012) Highly selective optical nitrite sensor for food analysis based on Lauth’s violet–triacetyl cellulose membrane film. J Food Chem 132:1600–1606CrossRefGoogle Scholar
  12. Galloway JN (2003) The global nitrogen cycle of the chapter. In: Heinrich DH, Karl KT (eds) Treatise on geochemistry. Pergamon, Oxford, pp 557–583CrossRefGoogle Scholar
  13. Gapper LW, Fong BY, Otter DE, Indyk HE, Woollard DC (2004) Determination of nitrite and nitrate in dairy products by ion exchange LC with spectrophotometric detection. Int Dairy J 14:881–887CrossRefGoogle Scholar
  14. Geng R, Zhao G, Liu M, Li M (2008) A sandwich structured SiO2/cytochrome c/SiO2 on a boron-doped diamond film electrode as an electrochemical nitrite biosensor. Biomaterials 29:2794–2801PubMedCrossRefGoogle Scholar
  15. Gopalan AI, Lee KP, Komathi S (2010) Bioelectrocatalytic determination of nitrite ions based on polyaniline grafted nanodiamond. Biosens Bioelectron 26:1638–1643PubMedCrossRefGoogle Scholar
  16. Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192PubMedCrossRefGoogle Scholar
  17. Hord NG, Tang Y, Bryan NS (2009) Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr 90:1–10PubMedCrossRefGoogle Scholar
  18. Huang X, Li Y, Chen Y, Wang L (2008) Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sens Actuators B Chem 134:780–786CrossRefGoogle Scholar
  19. Isoda N, Yokoyama H, Nojiri M, Suzuki S, Yamaguchi K (2010) Electroreduction of nitrite to nitrogen oxide by a copper-containing nitrite reductase model complex incorporated into collagen film. Bioelectrochemistry 77:82–88PubMedCrossRefGoogle Scholar
  20. Jain A, Smith RM, Verma KK (1997) Gas chromatographic determination of nitrite in water by precolumn formation of 2-phenylphenol with flame ionization detection. J Chromatogr A 760:319–325CrossRefGoogle Scholar
  21. Kachoosangi RT, Musameh MM, Yousef IA, Yousef JM, Kanan SM, Xiao L, Davies SG, Russell A, Compton RG (2009) Carbon nanotube-ionic liquid composite sensors and biosensors. Anal Chem 81:435–442PubMedCrossRefGoogle Scholar
  22. Kiang CH, Kuan SS, Guilbault GG (1975) A novel enzyme electrode method for the determination of nitrite based on nitrite reductase. Anal Chim Acta 80:209–214PubMedCrossRefGoogle Scholar
  23. Kodamatani H, Yamazaki S, Saito K, Tomiyasu T, Komatsu Y (2009) Selective determination method for measurement of nitrite and nitrate in water samples using high-performance liquid chromatography with post-column photochemical reaction and chemiluminescence detection. J Chromatogr A 1216:3163–3167PubMedCrossRefGoogle Scholar
  24. Larsen LH, Damgaard LR, Kjær T, Stenstrom T, Jensen AL (2000) Fast responding biosensor for on-line determination of nitrate/nitrite in activated sludge. Water Res 34:2463–2468CrossRefGoogle Scholar
  25. Larsson SC, Orsini N, Wolk A (2006) Processed meat consumption and stomach cancer risk: a meta-analysis. J Natl Cancer Inst 98:1078–1087PubMedCrossRefGoogle Scholar
  26. Li J, Lin X (2007) Electrocatalytic reduction of nitrite at polypyrrole nanowire–platinum nanocluster modified glassy carbon electrode. Microchem J 87:41–46CrossRefGoogle Scholar
  27. Liang F, Jia M, Hu J (2012) Pt-implanted indium tin oxide electrodes and their amperometric sensor applications for nitrite and hydrogen peroxide. Electrochim Acta 75:414–419CrossRefGoogle Scholar
  28. Lijinsky WN (1999) Nitroso compounds in the diet. Mutat Res 443:129–138PubMedCrossRefGoogle Scholar
  29. Lin CY, Vasantha VS, Ho KC (2009) Detection of nitrite using poly (3, 4 ethylenedioxythiophene) modified SPCEs. Sens Actuator B Chem 140:51–57CrossRefGoogle Scholar
  30. Pasquali CEL, Gallego PA, Hernando PF, Velasco M, Alegria JSD (2010) Two rapid and sensitive automated methods for the determination of nitrite and nitrate in soil samples. Microchem J 94:79–82CrossRefGoogle Scholar
  31. Pumera M, Sanchez S, Ichinose I, Tang J (2007) Electrochemical nanobiosensors. Sens Actuat B 123:1195–1205CrossRefGoogle Scholar
  32. Quan D, Min DG, Cha GS, Nam H (2006) Electrochemical characterization of biosensor based on nitrite reductase and methyl viologen co-immobilized glassy carbon electrode. Bioelectrochemistry 69:267–275PubMedCrossRefGoogle Scholar
  33. Rajesh S, Kanugula AK, Bhargava K, Ilavazhagan G, Kotamraju S, Karunakaran C (2010) Simultaneous electrochemical determination of superoxide anion radical and nitrite using Cu, ZnSOD immobilized on carbon nanotube in polypyrrole matrix. J Bios 26:689–695Google Scholar
  34. Santos WJR, Lima PR, Tanaka AA, Tanaka SM, Kubota LT (2009) Determination of nitrite in food samples by anodic voltammetry using a modified electrode. J Food Chem 113:1206–1211CrossRefGoogle Scholar
  35. Sasaki S, Karube I, Hirota N, Arikawa Y, Nishiyama M, Kukimoto M, Horinouchi S, Beppu T (1998) Application of nitrite reductase from Alcaligenes faecalis S-6 for nitrite measurement. Biosens Bioelectron 13:1–5PubMedCrossRefGoogle Scholar
  36. Scharf M, Moreno C, Costa C, Vandijk C, Payne WJ, Legall J, Moura I, Moura JJG (1995) Electrochemical studies on nitrite reductase toward a biosensor. Biochem Biophys Res Commun 209:1018–1025PubMedCrossRefGoogle Scholar
  37. Serra AS, Jorge SR, Silveira CM, Moura JJG, Jubete E, Ochoteco E, Cabañero G, Grande H, Almeida MG (2011) Cooperative use of cytochrome cd 1 nitrite reductase and its redox partner cytochrome c 552 to improve the selectivity of nitrite biosensing. J Anal Chim Acta 693:41–46CrossRefGoogle Scholar
  38. Silva SD, Cosnier S, Almeida MG, Moura JJG (2004) An efficient poly (pyrrole–viologen)- nitrite reductase biosensor for the mediated detection of nitrite. Electrochem Commun 6:404–408CrossRefGoogle Scholar
  39. Silveira CM, Gomes SP, Araújo AN, Conceição M, Montenegro BSM, Todorovic S, Viana AS, Silva RJC, Moura JJG, Almeida MG (2010) An efficient non-mediated amperometric biosensor for nitrite determination. Biosens Bioelectron 25:2026–2032PubMedCrossRefGoogle Scholar
  40. Strehlitz B, Grundig B, Schumacher W, Kroneck PMH, Vorlop K, Kotte H (1996) A nitrite sensor based on a highly sensitive nitrite reductase mediator-coupled amperometric detection. Anal Chem 68:807–816PubMedCrossRefGoogle Scholar
  41. Thévenot DR, Tóth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 71:2333–2348CrossRefGoogle Scholar
  42. Titov VY, Petrenko YM (2003) Nitrite catalase interaction as an important element of nitrite toxicity. Biochemistry 68:627PubMedGoogle Scholar
  43. Tu X, Xiao B, Xiong J, Chen X (2010) A simple miniaturised photometrical method for rapid determination of nitrate and nitrite in freshwater. Talanta 82:976–983PubMedCrossRefGoogle Scholar
  44. Vairavapandian D, Vichchulada P, Lay MD (2008) Preparation and modification of carbon nanotubes: review of recent advances and applications in catalysis and sensing. Anal Chim Acta 62:6119–6129Google Scholar
  45. Valentini F, Cristofanelli L, Carbone M, Palleschi G (2012) Glassy carbon electrodes modified with hemin-carbon nanomaterial films for amperometric H2O2 and NO2 detection. J Electrochim Acta 63:37–46CrossRefGoogle Scholar
  46. Victorin K (1994) Review of the genotoxicity of nitrogen oxides. Mutat Res 55:31743–31755Google Scholar
  47. Wang P, Mai Z, Dai Z, Li Y, Zou X (2009) Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite. Biosens Bioelectron 24:3242–3247PubMedCrossRefGoogle Scholar
  48. Washko PW, Hartzell WO, Levine M (1989) Ascorbic acid analysis using high performance liquid chromatography with coulometric electrochemical detection. Anal Biochem 181:276–282PubMedCrossRefGoogle Scholar
  49. Xia C, Ning W, Lin G (2009) Facile synthesis of novel MnO2 hierarchical nanostructures and their application to nitrite sensing. Sens Actuator B Chem 137:710–714CrossRefGoogle Scholar
  50. Xia C, Yanjun X, Ning W (2012) Hollow Fe2O3 polyhedrons: one-pot synthesis and their use as electrochemical material for nitrite sensing. Electrochim Acta 59:81–85CrossRefGoogle Scholar
  51. Yang S, Liu X, Zeng X, Xia B, Gu J, Luo S, Mai N, Wei W (2010) Fabrication of nano copper/carbon nanotubes/chitosan film by one-step electrodeposition and its sensitive determination of nitrite. Sens Actuator B Chem 145:762–768CrossRefGoogle Scholar
  52. Zazoua A, Hnaien M, Cosnier S, Renault NJ, Kherrat R (2009) A new HRP/catalase biosensor based on microconductometric transduction for nitrite determination. Mater Sci Eng 29:1919–1922CrossRefGoogle Scholar
  53. Zhang Z, Xia S, Leonard D, Renault NJ, Zhang J, Bessueille F, Goepfert Y, Wang X, Chen L, Zhu Z, Zhao J, Almeida MG, Silveira CM (2009) A novel nitrite biosensor based on conductometric electrode modified with cytochrome c nitrite reductase composite membrane. Biosens Bioelectron 24:1574–1579PubMedCrossRefGoogle Scholar
  54. Zhang Y, Yuan R, Chai Y, Li W, Zhong X, Zhong H (2011) Simultaneous voltammetric determination for DA, AA and NO2 based on graphene/poly-cyclodextrin/MWCNTs nanocomposite platform. Biosens Bioelectron 26:3977–3980CrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • V. Dhull
    • 1
  • A. Gahlaut
    • 2
  • A. Gothwal
    • 2
  • J. S. Duhan
    • 3
  • V. Hooda
    • 2
  1. 1.Department of Bio & NanotechnologyGuru Jambeshwar University of Science & TechnologyHisarIndia
  2. 2.Centre for BiotechnologyM.D. UniversityRohatkIndia
  3. 3.Department of BiotechnologyChaudhary Devi Lal UniversitySirsaIndia

Personalised recommendations