Bioremediation of PCB-Contaminated Sediments and Adaptive Mechanisms of Bacterial Degraders Exposed to Polychlorinated Biphenyls (PCBs)

  • Katarína Dercová
  • Hana Dudášová
  • Lucia Lukáčová
  • Slavomíra Murínová
  • Pavel Hucko
  • Lívia Tóthová
  • Juraj Škarba


In the recent decades, several hundred tons of polychlorinated biphenyls (PCBs) have been released into the environment. Due to their hydrophobic properties, PCBs tend to be adsorbed by natural organic matter in the aqueous bottom sediments. Sediment is an essential, integral part of the hydrological system. However, because sediments are the ultimate reservoir for the numerous chemical contaminants, they have the potential to pose ecological and human health hazard. Environmental and economic reasons have urged the development of bioremediation technologies for PCB removal from the contaminated areas. This contribution is focused on biodegradation of PCBs in contaminated sediments using biostimulation and bioaugmentation approaches of bioremediation, as well as on the effects of PCBs as the potential stress factors on the cell membrane of the bacterial degraders and on the membrane adaptation mechanisms. Determination of ecotoxicity and genotoxicity of PCB-contaminated sediments represents an important part of our research together with isolation and identification of PCB-degrading bacterial strains from the sediments. The obtained results indicate beneficial effect of both biostimulation and bioaugmentation strategies during biodegradation of PCBs in the contaminated sediments. PCBs affected saturation of membrane fatty acids, cis–trans isomerization, caused pronounced adaptation changes, and altered membrane fluidity of the cells of the bacterial degraders. This phenomenon is thought to be the major adaptive mechanism in microorganisms exposed to toxic aromatic pollutants. Study of ecotoxicity demonstrated that sediments sampled from industrial canal and water reservoir, both located in the vicinity of the former producer of PCBs in Slovakia, were toxic for the tested bioindicators. It has been established that PCB-contaminated sediments represent a source of adverse effects on life functions of the biota. Eleven bacterial strains were isolated and identified in the contaminated sediments using 16sRNA method. Detection of bphA gene encoding biphenyldioxygenase, the important starting enzyme of PCB degradation, was performed. Data obtained from microcosm studies might be useful in the preliminary design of a site-specific biostimulation/bioaugmentation strategy.


Supercritical Fluid Extraction Pseudomonas Stutzeri Achromobacter Xylosoxidans Ochrobactrum Anthropi bphA Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from the Scientific Grant Agency of the Ministry of Education, Science, Research, and Sports of Slovak Republic and Slovak Academy of Sciences (Grant No. 1/0734/12) is gratefully acknowledged. The authors are thankfull to Ing. Lucie Bielska (Masaryk University, Brno) for determination of bioavailability of PCBs in the contaminated sediments.


  1. Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego, p 320Google Scholar
  2. Ang EL, Zhao H, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzym Microb Technol 37:487–496CrossRefGoogle Scholar
  3. Apitz SE, Brils J, Marcomini A, Critto A, Agostini P, Micheletti CH, Pippa R, Scanferla P, Zuin S, Lánczos T, Dercová K, Kočan A, Petrík J (2006) Approaches and frameworks for managing contaminated sediments – a European perspective,  Chapter 1. In: Reible D, Apitz S (eds) Assessment and remediation of contaminated sediments, NATO Science Series, Series IV: Earth and environmental sciences. Springer, Dordrecht, pp 5–82CrossRefGoogle Scholar
  4. Bedard D (2003) Polychlorinated biphenyls in aquatic sediments: environmental fate and outlook for biological treatment. In: Häggblom MM, Bossert ID (eds) Dehalogenation: microbial processes and environmental application. Kluwer Academic Publishers, Boston, pp 443–465Google Scholar
  5. Björklund E, Nilsson T, Bøwadt S, Pilorz K, Mathiasson L, Hawthorne SB (2000) Introducing selective supercritical fluid extraction as a new tool for determining sorption/desorption behavior and bioavailability of persistent organic pollutants in sediment. J Biochem Biophys Method 43(1–3):295–311CrossRefGoogle Scholar
  6. Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013CrossRefGoogle Scholar
  7. Čertík M, Dercová K, Sejáková Z, Finďová M, Jakubík T (2003) Effect of polyaromatic hydrocarbons (PAHs) on the membrane lipids of bacterial cell. Biology 58:1111–1117Google Scholar
  8. Chihib NE, Tierny Y, Mary P, Hornez JP (2005) Adaptational changes in cellular fatty acids branching and unsaturation of Aeromonas species as a response to growth temperature and salinity. Int J Food Microbiol 102:113–119PubMedCrossRefGoogle Scholar
  9. Cronan JE (2002) Phospholipid modifications in bacteria. Curr Opin Microbiol 5:202–205PubMedCrossRefGoogle Scholar
  10. Denich TJ, Beaudette LA, Lee H, Trevor SJT (2003) Effect of selected environmental and physicochemical factors on bacterial cytoplasmic membranes. J Microbiol Method 52:149–182CrossRefGoogle Scholar
  11. Dercová K, Baláž Š, Haluška Ľ, Horňák V, Holecová V (1995) Degradation of PCBs by bacteria isolated from long-time contaminated soil. Int J Environ Anal Chem 58:337–348CrossRefGoogle Scholar
  12. Dercová K, Vrana B, Baláž Š, Šándorová A (1996) Biodegradation and evaporation of polychlorinated biphenyls (PCBs) in liquid media. J Ind Microbiol 16:325–329CrossRefGoogle Scholar
  13. Dercová K, Vrana B, Baláž Š (1999a) A kinetic distribution model of evaporation, biosorption and biodegradation of polychlorinated biphenyls (PCBs) in the suspension of Pseudomonas stutzeri. Chemosphere 38:1391–1400PubMedCrossRefGoogle Scholar
  14. Dercová K, Vrana B, Tandlich R, Šubová Ľ (1999b) Fenton’s type reaction and chemical pretreatment of PCBs. Chemosphere 39(15):2621–2628CrossRefGoogle Scholar
  15. Dercová K, Baláž S, Vrana B, Tandlich R (2003a) Aerobic biodegradation of polychlorinated biphenyls (PCBs): the fate, distribution, kinetics, and enhancement of PCB biodegradation efficacy in the bacterial cell suspension of Pseudomonas stutzeri. In: Sašek V, Baveye P, Glaser JA (eds) The utilization of bioremediation to reduce soil contamination: problems and solutions, vol 19, NATO Science Series, Series IV: Earth and environmental sciences. Kluwer Academic Publishers, Dordrecht, pp 95–113CrossRefGoogle Scholar
  16. Dercová K, Tandlich R, Brežná B (2003b) Application of terpenes as possible inducers of biodegradation of PCBs. Fresen Environ Bull 12(1):286–290Google Scholar
  17. Dercová K, Čertík M, Maľová A, Sejáková Z (2004) Effect of chlorophenols on the membrane lipids of bacterial cells. Int Biodeter Biodegr 54:251–254CrossRefGoogle Scholar
  18. Dercová K, Čičmanová J, Lovecká P, Demnerová K, Macková M, Hucko P, Kušnír P (2008) Isolation and identification of PCB-degrading microorganisms from contaminated sediments. Int Biodeter Biodegr 62:219–225CrossRefGoogle Scholar
  19. Dercová K, Šeligová J, Dudášová H, Mikulášová M, Šilhárová K, Tóthová L, Hucko P (2009) Characterization of the bottom sediments contaminated with polychlorinated biphenyls: evaluation of ecotoxicity and biodegradability. Int Biodeter Biodegr 63:440–449CrossRefGoogle Scholar
  20. Dercová K, Dudášová H, Lukáčová L, Kočan A, Murín M, Pilváňová A (2010) Environmental and technical aspects of PCB disposal, properties, monitoring, destruction, and remediation of PCB-contaminated sites in Slovakia. Now we have to address the PCB mess PEN Magazine (PCBs Elimination Network Magazine). Stockholm Convention, Geneva, pp 47–48.
  21. Dercová K, Dudášová H, Lukáčová L, Zorádová S, Hiller E, Hucko P, Tóthová L, Šilhárová K (2011) Evaluation of ecotoxicity, genotoxicity, and biodegradability of PCB-contaminated bed sediments. In: Kalogerakis N, Fava F (eds) CD ROM book of manuscripts, 5th European bioremediation conference, ID034, Chania, Crete, Greece, pp 1–6. Available also in: Abstract Book of 5th EBC, p 242, Chania, Crete, GreeceGoogle Scholar
  22. Diefenbach R, Keweloh H (1994) Synthesis of trans unsaturated fatty acids in Pseudomonas putida P8 by direct isomerization of the double bond of lipids. Arch Microbiol 162:120–125PubMedGoogle Scholar
  23. Donnelly PK, Hedge RS, Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28:981–988CrossRefGoogle Scholar
  24. Dudášová H, Lukáčová L, Zorádová S, Dercová K (2012) The effect of terpenes on biodegradation of PCBs. Int Biodeter Biodegr 69:23–27CrossRefGoogle Scholar
  25. Dudášová H, Lukáčová L, Murínová S, Puškárová A, Pangallo D, Dercová K (2013) Biodegradation ability of bacterial strains isolated from long-term PCB-contaminated sediment. J Basic Microbiol (in press). doi: 10.1002/jobm.201200369
  26. Duldhardt I, Gaebel J, Chrzanowski L, Nijenhuis I, Härtig C, Schauer F, Heipieper HJ (2010) Adaptation of anaerobically grown Thauera aromatica, Geobacter sulfurreducens and Desulfococcus multivorans to organic solvents on the level of membrane fatty acid composition. Microb Biotechnol 3(2):201–209PubMedCrossRefGoogle Scholar
  27. Dzantor EK, Woolston JE, Momen B (2002) PCB dissipation and microbial community analysis in rhizosphere soil under substrate amendment conditions. Int J Phytorem 4:283–295CrossRefGoogle Scholar
  28. Fava F, Bertini L, Pinelli D, Nocetini M (1999) Characterisation of the indigenous bacteria involved on the ex-situ aerobic bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Annali Chim 89:777–782Google Scholar
  29. Field JA, Alvarez RS (2007) Microbial transformation and degradation of polychlorinated biphenyls. Environ Pollut 155:1–12PubMedCrossRefGoogle Scholar
  30. Focht DD (1995) Strategies for the improvement of aerobic metabolism of polychlorinated biphenyls. Curr Opin Biotechnol 6:341–346CrossRefGoogle Scholar
  31. Furukawa K (1994) Molecular genetics and evolutionary relationship of PCB-degrading bacteria. Biodegradation 5:289–300PubMedCrossRefGoogle Scholar
  32. Furukawa K (2003) Super bugs for bioremediation. Trends Biotechnol 21(5):187–190PubMedCrossRefGoogle Scholar
  33. Gilbert ES, Crowley DE (1997) Plant compounds that induce polychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl Environ Microbiol 5:1933–1938Google Scholar
  34. Gilbert ES, Crowley DE (1998) Repeated application of carvone-induced bacteria to enhance biodegradation of polychlorinated biphenyls in soil. Appl Microbiol Biotechnol 50:489–494PubMedCrossRefGoogle Scholar
  35. Gutierrez JA, Nichols P, Couperwhite I (1999) Changes in whole cell-derived fatty acids induced by benzene and occurrence of the unusual 16:1 o6c in Rhodococcus sp. 33. FEMS Microbiol Lett 176:213–218CrossRefGoogle Scholar
  36. Hallgren P, Westbom R, Nilsson T, Sporring S, Björklund E (2006) Measuring bioavailability of polychlorinated biphenyls in soil to earthworms using selective supercritical fluid extraction. Chemosphere 63(9):1532–1538PubMedCrossRefGoogle Scholar
  37. Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227PubMedCrossRefGoogle Scholar
  38. Heipieper HJ, de Bont JAM (1994) Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of the fatty acid composition of membranes. Appl Environ Microbiol 60:4440–4444PubMedCentralPubMedGoogle Scholar
  39. Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58(6):1847–1852PubMedCentralPubMedGoogle Scholar
  40. Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms of resistance of whole cells to toxic organic solvents. TIBTECH 12:409–415CrossRefGoogle Scholar
  41. Heipieper HJ, Meulenbeld G, van Oirschot Q, de Bont JAM (1996) Effect of environmental factors on the trans/cis ratio of unsaturated fatty acids in Pseudomonas putida S12. Appl Environ Microbiol 62:2773–2777PubMedCentralPubMedGoogle Scholar
  42. Heipieper HJ, Waard P, Meer P, Killian JA, Isken S, Bont JAM, Eggink G, Wolf FA (2001) Regiospecific effect of 1-octanol on cis-trans isomerization of unsaturated fatty acids in the solvent-tolerant strain Pseudomonas putida S12. Appl Microbiol Biotechnol 57:541–547PubMedCrossRefGoogle Scholar
  43. Heipieper HJ, Meinhardt F, Seggura A (2003) The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 229:1–7PubMedCrossRefGoogle Scholar
  44. Heipieper HJ, Neumann G, Kabelitz N, Kastner M, Richnow HH (2004) Carbon isotope fractionation during cis-trans isomerization of unsaturated fatty acids in Pseudomonas putida. Appl Microbiol Biotechnol 66:285–290PubMedCrossRefGoogle Scholar
  45. Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973PubMedCrossRefGoogle Scholar
  46. Hernandez BS, Koh SC, Chial M, Focht DD (1997) Terpene utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation 8:153–158CrossRefGoogle Scholar
  47. Higson FK (1992) Microbial degradation of biphenyl and its derivates. Adv Appl Microbiol 37:135–164PubMedCrossRefGoogle Scholar
  48. Hiller E, Zemanová L, Sirotiak M, Jurkovič Ľ (2010) Concentrations, distributions, and sources of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in bed sediments of the water reservoirs in Slovakia. Environ Monit Assess 173:883–897PubMedCrossRefGoogle Scholar
  49. Junker F, Ramos JL (1999) Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E. J Bacteriol 181:5693–5700PubMedCentralPubMedGoogle Scholar
  50. Kabelitz N, Santos PM, Heipieper HJ (2003) Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiol Lett 220:223–227PubMedCrossRefGoogle Scholar
  51. Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302PubMedCentralPubMedGoogle Scholar
  52. Kočan A, Petrík J, Chovancová J, Drobná B (1994) Method for the group separation of non-ortho-, mono-ortho- and multi-ortho-substituted polychlorinated biphenyls and polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans using activated carbon chromatography. J Chromatogr 665:139–153CrossRefGoogle Scholar
  53. Kočan A, Drobná B, Chovancová J, Kočan J, Petrík J, Szabová E (1998) Burden of the environment and human population in the area contaminated with PCBs. Interim report, Project No 105/98-24, IPCM Bratislava, November, 113 pp. (in Slovak)Google Scholar
  54. Kočan A, Petrík J, Drobná B, Chovancová J, Jursa S, Pavúk M, Kovrižnych J, Langer P, Bohov P, Tajtáková M, Suchánek P (1999) Burden of the environment and human population in the area contaminated with PCBs. Final report, Project No 105/98-24, IPCM Bratislava, February, 217 pp. (in Slovak)Google Scholar
  55. Kočan A, Petrík J, Jursa S, Chovancová J, Drobná B (2001) Environmental contamination with polychlorinated biphenyls in the area of their former manufacture in Slovakia. Chemosphere 43:596–600Google Scholar
  56. Langer P, Tajtáková M, Kočan A, Petrík J, Koška J, Kšinantová L, Rádiková Ž, Ukropec J, Imrich R, Hučková M, Chovancová J, Drobná B, Jursa S, Vlček M, Bergman A, Athanasiadou M, Hovander L, Shishiba Y, Trnovec T, Šeböková E, Klimeš I (2006) Thyroid ultrasound volume, structure and function after long-term high exposure of large population to polychlorinated biphenyls, pesticides and dioxin. Chemosphere 69:118–127CrossRefGoogle Scholar
  57. Lovecká P, Melenová I, Kučerová P, Nováková H, Macková M, Ruml T, Pazlarová J, Demnerová K (2004) Products of biological PCB degradation and their ecotoxicity. Int Biodeter Biodegr 53:195–283CrossRefGoogle Scholar
  58. Luo W, D’Angelo EM, Coyne MS (2008) Organic carbon effects on aerobic polychlorinated biphenyl removal and bacterial community composition in soils and sediments. Chemosphere 70:364–373PubMedCrossRefGoogle Scholar
  59. Macková M, Uhlík O, Lovecká P, Viktorová J, Nováková M, Demnerová K, Sylvestre M, Macek T (2010) Bacterial degradation of polychlorinated biphenyls. In: Barton L, Mandl M, Loy A (eds) Geomicrobiology: molecular and environmental perspective. Springer Science, Dordrecht/New York, pp 347–366. ISBN 978-90-481-9203-8CrossRefGoogle Scholar
  60. McCullar MV, Koh S-C, Focht DD (2002) The use of mutants to discern the degradation pathway of 3,4 P-dichlorobiphenyl in Pseudomonas acidovorans M3GY. FEMS Microbiol Ecol 42:81–87Google Scholar
  61. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375PubMedCrossRefGoogle Scholar
  62. Mills SA, Thal DI, Barney J (2007) A summary of the 209 PCB congener nomenclature. Chemosphere 68:1603–1612PubMedCrossRefGoogle Scholar
  63. Mouhamadou B, Faure M, Sage L, Marcais J, Souard F, Geremia RA (2013) Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biol 117:268–274PubMedCrossRefGoogle Scholar
  64. Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375PubMedCrossRefGoogle Scholar
  65. Mrozik A, Labuzek S, Piotrowska-Seget Z (2004) Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation. Microbiol Res 160:149–157CrossRefGoogle Scholar
  66. Mrozik A, Cycoń M, Piotrowska-Seget Z (2010) Changes of FAME profiles as a marker of phenol degradation in different soil inoculated with Pseudomonas sp. CF600. Int Biodeter Biodegr 64:86–96CrossRefGoogle Scholar
  67. Murínová S, Dudášová H, Lukáčová L, Lászlová K, Dercová K (2013) Adaptation responses of bacterial strains to environmental stress caused by the presence of toxic organic compounds. Chem Listy 107(5):356–361Google Scholar
  68. Nichols-Smith S, The SY, Kuhl TL (2004) Thermodynamic and mechanical properties of model mitochondrial membranes. Biochim Biophys Acta 1663:82–88PubMedCrossRefGoogle Scholar
  69. Nilsson T, Björklund E (2005) Selective supercritical fluid extraction as a tool for determining the PCB fraction accessible for uptake by chironomid larvae in a limnic sediment. Chemosphere 60(1):141–146PubMedCrossRefGoogle Scholar
  70. Nilsson T, Sporring S, Björklund E (2003) Selective supercritical fluid extraction to estimate the fraction of PCB that is bioavailable to a benthic organism in a naturally contaminated sediment. Chemosphere 53(8):1049–1052PubMedCrossRefGoogle Scholar
  71. Nilsson T, Häkkinen J, Larsson P, Björklund E (2006) Selective supercritical fluid extraction to identify aged sediment-bound PCBs available for uptake by eel. Environ Pollut 140(1):87–94PubMedCrossRefGoogle Scholar
  72. Ohtsubo Y, Nagata Y, Kimbara K, Takagi M, Ohta A (2000) Expression of the bph genes involved in biphenyl/PCB degradation in Pseudomonas sp. KKS102 induced by the biphenyl degradation intermediate, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid. Gene 256:223–228PubMedCrossRefGoogle Scholar
  73. Pedrotta V, Witholt B (1999) Isolation and characterization of the cis–trans-unsaturated fatty acid isomerase of Pseudomonas oleovorans GPo12. J Bacteriol 181:3256–3261PubMedCentralPubMedGoogle Scholar
  74. Petrík J, Kočan A, Jursa S, Drobná B, Chovancová J, Pavúk M (2001) Polychlorinated biphenyls in sediments in Eastern Slovakia. Fresen Environ Bull 10:375–380Google Scholar
  75. Pieters RJ, Lutje Spelberg JH, Kellogg RM, Janssen D (2001) The enantioselectivity of haloalkane dehalogenases. Tetrahedron Lett 42(3):469–471CrossRefGoogle Scholar
  76. Pritchard PH (1992) Use of inoculation in bioremediation. Curr Opin Biotechnol 3:232–243CrossRefGoogle Scholar
  77. Ramos JL, Duques E, Rodriguez-Hervas JJ, Godoy P, Haidours A, Reyes F, Fernandez-Barrero A (1997) Mechanisms for solvent tolerance in bacteria. J Biol Chem 272:3887–3890PubMedCrossRefGoogle Scholar
  78. Reineke W (1984) Microbial degradation of halogenated aromatic compounds. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 319–360Google Scholar
  79. Šajbidor J (1997) Effect of some environmental factors on the content and composition of microbial membrane lipids. Crit Rev Biotechnol 17(2):87–103PubMedCrossRefGoogle Scholar
  80. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  81. Schlame M (2008) Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J Lipid Res 49:1609–1619CrossRefGoogle Scholar
  82. Sejáková Z, Dercová K, Tóthová L (2009) Biodegradation and ecotoxicity study of soil contaminated by pentachlorophenol (PCP) using bioaugmentation and addition of sorbents. World J Microb Biotechnol 25:243–252CrossRefGoogle Scholar
  83. SHMÚ (2004) Initial assistance to the Slovak Republic to meet its obligations under the Stockholm Convention on Persistent Organic Pollutants (POPs). Proposal of the national implementation plan under the Stockholm Convention on POPs in Slovakia Project SLO/01/G31. Technical report no 5 (Final version), SHMÚ, Bratislava, April, 131 ppGoogle Scholar
  84. Sikkema J, de Bont JAM, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8026PubMedGoogle Scholar
  85. Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedCentralPubMedGoogle Scholar
  86. Svobodová K, Plačková M, Novotná V, Cajthaml T (2009) Estrogenic and androgenic activity of PCBs, their chlorinated metabolites and other endocrine disruptors estimated with two in vitro yeast assays. Sci Total Environ 407:5921–5925PubMedCrossRefGoogle Scholar
  87. Sylvestre M (2013) Prospects for using combined engineered bacterial enzymes and plant systems to rhizoremediate polychlorinated biphenyls. Environ Microbiol 15(3):907–915PubMedCrossRefGoogle Scholar
  88. Tandlich R, Brežná B, Dercová K (2001) The effect of terpenes on the biodegradation of PCBs by Pseudomonas stutzeri. Chemosphere 44:1547–1555PubMedCrossRefGoogle Scholar
  89. Tandlich R, Vrana B, Payne S, Dercová K, Baláž Š (2011) Biodegradation mechanism of biphenyl by a strain of Pseudomonas stutzeri. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 46(4):337–344CrossRefGoogle Scholar
  90. Tandlich R, Martišková M, Dercová K, Baláž Š (2013) Characterization of the chlorobenzoate hydrophobicity using the 1-octanol/water partition system. Fres Environ Bull 22(1):22–29 (the same article but published after revision in another journal)Google Scholar
  91. Taniyasu S, Kannan K, Holoubek I, Ansorgova A, Horii Y, Hanari N et al (2003) Isomer-specific analysis of chlorinated biphenyls, naphthalenes and dibenzofurans in Delor: polychlorinated biphenyl preparations from the former Czechoslovakia. Environ Pollut 126:169–178PubMedCrossRefGoogle Scholar
  92. Tříska J, Kuncová G, Macková M, Nováková H, Paasivirta J, Lahtiperä M, Vrchotová N (2004) Isolation and identification of intermediates from biodegradation of low chlorinated biphenyls (DELOR-103). Chemosphere 54:725–733PubMedCrossRefGoogle Scholar
  93. Uhlík O, Jecná K, Leigh MB, Macková M, Macek T (2009) Sci Tot Environ 407:3611–3619CrossRefGoogle Scholar
  94. Unterman R, DeFlaun M, Steffan R (2000) Advanced in situ bioremediation – a hierarchy of technology choices. In: Rehm HJ, Reed G (eds) Biotechnology, vol 11b, 2nd edn, Environmental processes II: soil decontamination. Klein J (ed). Wiley-Verlag, Weinheim, FRGGoogle Scholar
  95. Vasilyeva GK, Strijakova ER (2007) Bioremediation of soils and sediments contaminated by polychlorinated biphenyls. Microbiology 76(6):639–653CrossRefGoogle Scholar
  96. Vasseur P, Bonnard M, Palais F, Eom IC, Morel JL (2008) Bioavailability of chemical pollutants in contaminated soils and pitfalls of chemical analyses in hazard assessment. Environ Toxicol 23(5):652–656PubMedCrossRefGoogle Scholar
  97. Vítková M, Dercová K, Molnárová J, Tóthová L, Polek B, Godočíková J (2011) The effect of lignite and Comamonas testosteroni on pentachlorophenol biodegradation and soil ecotoxicity. Water Air Soil Pollut 218:145–155CrossRefGoogle Scholar
  98. von Wallbrunn A, Richnow HH, Neumann G, Meinhardt F, Heipieper HJ (2003) Mechanism of cis–trans isomerization of unsaturated fatty acids in Pseudomonas putida. J Bacteriol 185:1730–1733CrossRefGoogle Scholar
  99. Vrana B, Dercová K, Baláž Š (1995) Monitoring evaporation polychlorinated biphenyls (PCBs) in long-term degradation experiments. Biotechnol Tech 9:333–338CrossRefGoogle Scholar
  100. Vrana B, Dercová K, Baláž Š (1996a) Evaporation kinetics of polychlorinated biphenyls (PCBs) during biodegradation experiments. Biotechnol Tech 10:37–40CrossRefGoogle Scholar
  101. Vrana B, Dercová K, Baláž Š, Ševčíková A (1996b) Effect of chlorobenzoates on the degradation of polychlorinated biphenyls (PCBs) by Pseudomonas stutzeri. World J Microb Biotechnol 12:323–326CrossRefGoogle Scholar
  102. Vrana B, Tandlich R, Baláž Š, Dercová K (1998) The aerobic biodegradation of polychlorinated biphenyls by bacteria. Biologia 53:251–266Google Scholar
  103. Weber FJ, Isken S, de Bont JAM (1994) Cis/trans isomerization of fatty acids as a defence mechanism of Pseudomonas putida strains to toxic concentrations of toluene. Microbiology 140:2013–2017PubMedCrossRefGoogle Scholar
  104. Zhiwei Y, Palkovičová Ľ, Drobná B, Petrík J, Kočan A, Trnovec T, Hertz-Picciotto I (2007) Comparison of organochlorine compound concentrations in colostrum and mature milk. Chemosphere 66:1012–1018CrossRefGoogle Scholar
  105. Zorádová S, Dudášová H, Lukáčová L, Dercová K, Čertík M (2011) The effect of polychlorinated biphenyls (PCBs) on the membrane lipids of Pseudomonas stutzeri. Int Biodeter Biodegr 65:1019–1023CrossRefGoogle Scholar
  106. Zorádová-Murínová S, Dudášová H, Lukáčová L, Čertík M, Šilharová K, Vrana B, Dercová K (2012) Adaptation mechanisms of bacteria during the degradation of polychlorinated biphenyls in the presence of natural and synthetic terpenes as potential degradation inducers. Appl Microbiol Biotechnol 94:1375–1385PubMedCrossRefGoogle Scholar
  107. Zougagh M, Valcárcer M, Ríos A (2004) Supercritical fluid extraction: a critical review of its analytical usefulness. Trends Anal Chem 23:399–406CrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • Katarína Dercová
    • 1
  • Hana Dudášová
    • 1
  • Lucia Lukáčová
    • 1
  • Slavomíra Murínová
    • 1
  • Pavel Hucko
    • 2
  • Lívia Tóthová
    • 2
  • Juraj Škarba
    • 1
  1. 1.Faculty of Chemical and Food Technology, Institute of BiotechnologySlovak University of TechnologyBratislavaSlovakia
  2. 2.Water Research InstituteBratislavaSlovakia

Personalised recommendations