Third Generation Green Energy: Cyanobacteria, Key to Production of Sustainable Energy Through Metabolic Engineering

  • Namita Singh
  • Ritika Chanan


Biofuels are important as dependency on fossil fuels has resulted in economic instability in the world and heavy environmental damage. Burning of fossil fuel releases heavy amounts of carbon dioxide in the atmosphere, raising the concern of global warming. Development of alternative energy forms, sustainable and renewable in nature, is thus the need of the hour. In this context, agricultural production of biofuels has gained utmost importance, and more recently industrial biofuel production through cyanobacteria at large scale has almost stabilized the current scenario of global warming and current fuel demands. Modulation in the cyanobacterial biochemical and metabolic pathways at the genetic level for attractive biofuel yields is a challenge for upcoming scientists to offset petroleum and mineral oil usage and dependency.


Lignocellulosic Biomass Biofuel Production Biohydrogen Production Carbon Dioxide Fixation Lignocellulosic Waste 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arthur DL (1999) Analysis and integral evaluation of potential carbon dioxide neutral fuel chains. GAVE reports (Management, summary, sheet presentation and appendices). Netherlands Agency for Energy and the Environment, UtrechtGoogle Scholar
  2. Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265PubMedCrossRefGoogle Scholar
  3. Barriere Y et al (2004) Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. Comptes Rendus Biol 327:847–860CrossRefGoogle Scholar
  4. Berndes G, Hoogwijk M et al (2003) The contribution of biomass in the future global energy supply. Biomass Bioenergy 25:1–28CrossRefGoogle Scholar
  5. Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65:523–528PubMedCentralPubMedGoogle Scholar
  6. Dewinder B, Stal LJ, Mur LR (1990) Crinalium epipsammum sp. nov.: a filamentous cyanobacterium with trichomes composed of elliptical cells and containing poly-β-(1,4) glucar (cellulose). J Gen Microbiol 136:1645–1653CrossRefGoogle Scholar
  7. Dunahay TG, Jarvis EE et al (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31:1004–1011CrossRefGoogle Scholar
  8. Elam N (1996) Automotive fuels survey, Part 2: Raw materials and conversion. International Energy Agency, BredaGoogle Scholar
  9. Fulda M (2010) Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol 152(3):1598–1610PubMedCentralPubMedCrossRefGoogle Scholar
  10. Giroux MJ, Shaw J, Barry G et al (1996) A single mutation that increases maize seed weight. Proc Natl Acad Sci 93:5824–5829PubMedCrossRefGoogle Scholar
  11. Goldemberg J (2000) World energy assessment, preface. United Nations Development Programme, New YorkGoogle Scholar
  12. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810PubMedCrossRefGoogle Scholar
  13. Gressel J (2008) Genetic glass ceilings: transgenics for crop biodiversity. Johns Hopkins University Press, BaltimoreGoogle Scholar
  14. Gressel J, Zilberstein A (2003) Let them eat (GM) straw. Trends Biotechnol 21:525–530PubMedCrossRefGoogle Scholar
  15. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Physiol 21:493–507Google Scholar
  16. Hall DO, Moss PA (1983) Biomass for energy in developing countries. Geojournal 7(1):5–14CrossRefGoogle Scholar
  17. Hall DO, Rosillo-Calle F, Williams RH et al (1993) Biomass for energy: supply prospects. In: Johansson TB, Kelly H, Amulya KNR, Williams RH (eds) Renewable energy, sources for fuels and electricity. Island Press, Washington, DCGoogle Scholar
  18. Heyer H, Krumbein WE (1991) Excretion of fermentation products in dark and anaerobically incubated cyanobacteria. Arch Microbiol 155:284–287CrossRefGoogle Scholar
  19. Kaczmarzyk D, Fulda M (2010) Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol 152(3):1598–1610PubMedCentralPubMedCrossRefGoogle Scholar
  20. Kaplan A, Hagemann M, Bauwe H, Kahlon S, Ogawa T (2008) Carbon acquisition by cyanobacteria: mechanisms, comparative genomics and evolution. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Caister Academic Press, SevillaGoogle Scholar
  21. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232CrossRefGoogle Scholar
  22. Molnar AA, Bassett E et al (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58:165–174PubMedCrossRefGoogle Scholar
  23. Nashawi IS, Malallah A, Al-Bisharah M (2010) Forecasting world crude oil production using multicyclic Hubbert model. Energy Fuels 24:1788–1800CrossRefGoogle Scholar
  24. Nobles DR, Brown RM (2008) Transgenic expression of Gluconacetobacter xylinus strain ATCC 53582 cellulose synthase genes in the cyanobacterium Synechococcus leopoliensis strain UTCC 100. Cellulose 15:691–701CrossRefGoogle Scholar
  25. Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102:10163–10172PubMedCrossRefGoogle Scholar
  26. Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941PubMedCrossRefGoogle Scholar
  27. Pienkos PT, Darzins A (2009) The promise and challenges of microalgal derived biofuels. Biofuels Bioprod Biorefin 3(4):431–440CrossRefGoogle Scholar
  28. Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate and high protein and polyunsaturated fatty acid content. Phycol Res 54:255–259CrossRefGoogle Scholar
  29. Riso D, Raniell VR et al (2009) Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 37:e96PubMedCentralPubMedCrossRefGoogle Scholar
  30. Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100(2):203–212PubMedCrossRefGoogle Scholar
  31. Savage DF, Afonso B, Chen AH, Silver PA (2010) Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327:1258–1261PubMedCrossRefGoogle Scholar
  32. Schneegurt MA, Sherman DM, Sherman LA (1997) Growth, physiology and ultrastructure of the diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142 in mixotrophic and chemotrophic cultures. J Phycol 33:632–642CrossRefGoogle Scholar
  33. Sheehan J, Dunahay T et al (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program – biodiesel from algae. National Renewable Energy Laboratory, Golden, pp 1–328CrossRefGoogle Scholar
  34. Smith AM (2008) Prospects for increasing starch and sucrose yields for bioethanol production. Plant J 54:546–558PubMedCrossRefGoogle Scholar
  35. Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–98PubMedCrossRefGoogle Scholar
  36. Stanier RY, Cohenbazire G (1977) Phototrophic prokaryotes—Cyanobacteria. Annu Rev Microbiol 31:225–274PubMedCrossRefGoogle Scholar
  37. Stark DM, Timmerman KP, Barry GF, Preiss J, Kishore GM (1992) Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science 258:287–292PubMedCrossRefGoogle Scholar
  38. Stockel J et al (2008) Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes. Proc Natl Acad Sci U S A 105:6156–6161PubMedCentralPubMedCrossRefGoogle Scholar
  39. Tamagnini P et al (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20PubMedCentralPubMedCrossRefGoogle Scholar
  40. Tamagnini P et al (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31:692–720PubMedCrossRefGoogle Scholar
  41. Toepel WJ et al (2008) Differential transcriptional analysis of the cyanobacterium Cyanothece sp. strain ATCC 51142 during light–dark and continuous-light growth. J Bacteriol 190:3904–3913PubMedCentralPubMedCrossRefGoogle Scholar
  42. Vanderoost J, Bulthuis BA, Feitz S, Krab K, Kraayenhof R (1989) Fermentation metabolism of the unicellular cyanobacterium Cyanothece PCC 7822. Arch Microbiol 152:415–419CrossRefGoogle Scholar
  43. Vigeolas HP, Waldeck T et al (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5:431–441PubMedCrossRefGoogle Scholar
  44. Voelker TA, Davies HM (1994) Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J Bacteriol 176:7320–7327PubMedCentralPubMedGoogle Scholar
  45. Yang J, Xu M et al (2011) Life cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102(1):159–165PubMedCrossRefGoogle Scholar
  46. Zehr JP et al (2001) Unicellular cyanobacteria fix nitrogen in the subtropical North Pacific Ocean. Nature 412:635–638PubMedCrossRefGoogle Scholar
  47. Zhao T, Wang W et al (2009) Gene silencing by artificial microRNAs in Chlamydomonas. Plant J 58:157–164PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.Department of Bio & Nano TechnologyGuru Jambheshwar University of Science and TechnologyHisarIndia

Personalised recommendations