Skip to main content

Third Generation Green Energy: Cyanobacteria, Key to Production of Sustainable Energy Through Metabolic Engineering

  • Chapter
  • First Online:
Biotechnology: Prospects and Applications

Abstract

Biofuels are important as dependency on fossil fuels has resulted in economic instability in the world and heavy environmental damage. Burning of fossil fuel releases heavy amounts of carbon dioxide in the atmosphere, raising the concern of global warming. Development of alternative energy forms, sustainable and renewable in nature, is thus the need of the hour. In this context, agricultural production of biofuels has gained utmost importance, and more recently industrial biofuel production through cyanobacteria at large scale has almost stabilized the current scenario of global warming and current fuel demands. Modulation in the cyanobacterial biochemical and metabolic pathways at the genetic level for attractive biofuel yields is a challenge for upcoming scientists to offset petroleum and mineral oil usage and dependency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arthur DL (1999) Analysis and integral evaluation of potential carbon dioxide neutral fuel chains. GAVE reports (Management, summary, sheet presentation and appendices). Netherlands Agency for Energy and the Environment, Utrecht

    Google Scholar 

  • Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265

    Article  CAS  PubMed  Google Scholar 

  • Barriere Y et al (2004) Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. Comptes Rendus Biol 327:847–860

    Article  CAS  Google Scholar 

  • Berndes G, Hoogwijk M et al (2003) The contribution of biomass in the future global energy supply. Biomass Bioenergy 25:1–28

    Article  Google Scholar 

  • Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65:523–528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dewinder B, Stal LJ, Mur LR (1990) Crinalium epipsammum sp. nov.: a filamentous cyanobacterium with trichomes composed of elliptical cells and containing poly-β-(1,4) glucar (cellulose). J Gen Microbiol 136:1645–1653

    Article  CAS  Google Scholar 

  • Dunahay TG, Jarvis EE et al (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31:1004–1011

    Article  CAS  Google Scholar 

  • Elam N (1996) Automotive fuels survey, Part 2: Raw materials and conversion. International Energy Agency, Breda

    Google Scholar 

  • Fulda M (2010) Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol 152(3):1598–1610

    Article  PubMed Central  PubMed  Google Scholar 

  • Giroux MJ, Shaw J, Barry G et al (1996) A single mutation that increases maize seed weight. Proc Natl Acad Sci 93:5824–5829

    Article  CAS  PubMed  Google Scholar 

  • Goldemberg J (2000) World energy assessment, preface. United Nations Development Programme, New York

    Google Scholar 

  • Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810

    Article  CAS  PubMed  Google Scholar 

  • Gressel J (2008) Genetic glass ceilings: transgenics for crop biodiversity. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Gressel J, Zilberstein A (2003) Let them eat (GM) straw. Trends Biotechnol 21:525–530

    Article  CAS  PubMed  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Physiol 21:493–507

    CAS  Google Scholar 

  • Hall DO, Moss PA (1983) Biomass for energy in developing countries. Geojournal 7(1):5–14

    Article  Google Scholar 

  • Hall DO, Rosillo-Calle F, Williams RH et al (1993) Biomass for energy: supply prospects. In: Johansson TB, Kelly H, Amulya KNR, Williams RH (eds) Renewable energy, sources for fuels and electricity. Island Press, Washington, DC

    Google Scholar 

  • Heyer H, Krumbein WE (1991) Excretion of fermentation products in dark and anaerobically incubated cyanobacteria. Arch Microbiol 155:284–287

    Article  CAS  Google Scholar 

  • Kaczmarzyk D, Fulda M (2010) Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol 152(3):1598–1610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaplan A, Hagemann M, Bauwe H, Kahlon S, Ogawa T (2008) Carbon acquisition by cyanobacteria: mechanisms, comparative genomics and evolution. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Caister Academic Press, Sevilla

    Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Molnar AA, Bassett E et al (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58:165–174

    Article  CAS  PubMed  Google Scholar 

  • Nashawi IS, Malallah A, Al-Bisharah M (2010) Forecasting world crude oil production using multicyclic Hubbert model. Energy Fuels 24:1788–1800

    Article  CAS  Google Scholar 

  • Nobles DR, Brown RM (2008) Transgenic expression of Gluconacetobacter xylinus strain ATCC 53582 cellulose synthase genes in the cyanobacterium Synechococcus leopoliensis strain UTCC 100. Cellulose 15:691–701

    Article  CAS  Google Scholar 

  • Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102:10163–10172

    Article  CAS  PubMed  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  CAS  PubMed  Google Scholar 

  • Pienkos PT, Darzins A (2009) The promise and challenges of microalgal derived biofuels. Biofuels Bioprod Biorefin 3(4):431–440

    Article  CAS  Google Scholar 

  • Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate and high protein and polyunsaturated fatty acid content. Phycol Res 54:255–259

    Article  CAS  Google Scholar 

  • Riso D, Raniell VR et al (2009) Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 37:e96

    Article  PubMed Central  PubMed  Google Scholar 

  • Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100(2):203–212

    Article  CAS  PubMed  Google Scholar 

  • Savage DF, Afonso B, Chen AH, Silver PA (2010) Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327:1258–1261

    Article  CAS  PubMed  Google Scholar 

  • Schneegurt MA, Sherman DM, Sherman LA (1997) Growth, physiology and ultrastructure of the diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142 in mixotrophic and chemotrophic cultures. J Phycol 33:632–642

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T et al (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program – biodiesel from algae. National Renewable Energy Laboratory, Golden, pp 1–328

    Book  Google Scholar 

  • Smith AM (2008) Prospects for increasing starch and sucrose yields for bioethanol production. Plant J 54:546–558

    Article  CAS  PubMed  Google Scholar 

  • Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–98

    Article  CAS  PubMed  Google Scholar 

  • Stanier RY, Cohenbazire G (1977) Phototrophic prokaryotes—Cyanobacteria. Annu Rev Microbiol 31:225–274

    Article  CAS  PubMed  Google Scholar 

  • Stark DM, Timmerman KP, Barry GF, Preiss J, Kishore GM (1992) Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science 258:287–292

    Article  CAS  PubMed  Google Scholar 

  • Stockel J et al (2008) Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes. Proc Natl Acad Sci U S A 105:6156–6161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamagnini P et al (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamagnini P et al (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31:692–720

    Article  CAS  PubMed  Google Scholar 

  • The Green Chip Stocks (2008) http://www.greenchipstocks.com/articles/investing-algae-biofuel/253

  • Toepel WJ et al (2008) Differential transcriptional analysis of the cyanobacterium Cyanothece sp. strain ATCC 51142 during light–dark and continuous-light growth. J Bacteriol 190:3904–3913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vanderoost J, Bulthuis BA, Feitz S, Krab K, Kraayenhof R (1989) Fermentation metabolism of the unicellular cyanobacterium Cyanothece PCC 7822. Arch Microbiol 152:415–419

    Article  CAS  Google Scholar 

  • Vigeolas HP, Waldeck T et al (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol J 5:431–441

    Article  CAS  PubMed  Google Scholar 

  • Voelker TA, Davies HM (1994) Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J Bacteriol 176:7320–7327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Xu M et al (2011) Life cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102(1):159–165

    Article  CAS  PubMed  Google Scholar 

  • Zehr JP et al (2001) Unicellular cyanobacteria fix nitrogen in the subtropical North Pacific Ocean. Nature 412:635–638

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Wang W et al (2009) Gene silencing by artificial microRNAs in Chlamydomonas. Plant J 58:157–164

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namita Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Singh, N., Chanan, R. (2013). Third Generation Green Energy: Cyanobacteria, Key to Production of Sustainable Energy Through Metabolic Engineering. In: Salar, R., Gahlawat, S., Siwach, P., Duhan, J. (eds) Biotechnology: Prospects and Applications. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1683-4_12

Download citation

Publish with us

Policies and ethics