Molecular Diversity of Rhizobial and Nonrhizobial Bacteria from Nodules of Cool Season Legumes

  • S. S. Dudeja
  • Nidhi


A specific trait of legumes is the ability to form nodules with nitrogen-fixing rhizobia. At present plenty of reports are available regarding the presence of other microorganisms (associated or endophytic) in the nodules apart from nitrogen-fixing bacteria, as nodules are much richer in nutrients as compared to roots. There are 16 genera of bacteria which are able to form nodules in different legumes. These include Rhizobium, Ensifer, Mesorhizobium, Phyllobacterium, Bradyrhizobium, Ochrobactrum, Methylobacterium, Azorhizobium, Allorhizobium, Aminobacter, Shinella and Devosia belonging to α-proteobacteria and four genera, Burkholderia, Microvirga, Cupriavidus and Herbaspirillum, belonging to β-proteobacteria. About 120 species belonging to these genera form nodules in different legumes. In case of cool season legumes, Mesorhizobium form nodules in chickpea and 30 Mesorhizobium species are known, but M. ciceri, M. mediterraneum, M. temperadae, M. tianshanens, M. sp. (Cicer) and Mesorhizobium muleiense sp. nov. have been reported to form nodules in chickpea. Similarly R. leguminosarum bv. viciae nodulates crop legume pea (Pisum sativum), Vicia spp. and Lens esculenta. The legume root nodules, apart from fixing atmospheric nitrogen, mediate numerous underground interactions with beneficial microbes, such as rhizobia, nonrhizobial bacteria, mycorrhizae and parasitic interactions with other pathogenic microbes. Legume root nodules constitute vast and diverse niches for endophytic organisms, and there is not a single legume nodule devoid of endophyte. The population density of endophytes is highly variable, depending mainly on the bacterial species and host genotypes but also on the host developmental stage, inoculum’s density and environmental conditions. Large number of culturable as well as nonculturable rhizobial and nonrhizobial endophytes in legume nodules has been reported. Commonly rhizobial and nonrhizobial genera existing as endophytic in legume tissues include Agrobacterium, Bacillus, Curtobacterium, Enterobacter, Erwinia, Mycobacterium, Paenibacillus, Pseudomonas, Phyllobacterium, Ochrobactrum, Sphingomonas, Rhizobium, Ensifer, Mesorhizobium, Burkholderia, Phyllobacterium and Devosia.


Endophytic Bacterium Cicer Arietinum Symbiotic Gene Rhizobial Population Chickpea Cultivar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alexandre A, Laranjo M, Oliveira S (2006) Natural populations of chickpea rhizobia evaluated by antibiotic resistance profiles and molecular methods. Microb Ecol 51:128–136PubMedCrossRefGoogle Scholar
  2. Althabegoiti MJ, Lozano LF, Torres-Tejerizo G, Ormeño-Orrillo E, Rogel MA, González V, Martínez-Romero E (2012) Genome sequence of Rhizobium grahamii CCGE502, a broad-host-range symbiont with low nodulation competitiveness in Phaseolus vulgaris. J Bacteriol 194:6651–6652PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bibi F, Chung EJ, Khan A, Jeon CO, Chung YR (2012) Rhizobium halophytocola sp. nov., isolated from the root of a coastal dune plant. Int J Syst Evol Microbiol 62:1997–2003PubMedCrossRefGoogle Scholar
  4. Blazinkov M, Sikora S, Uher D, Macesic D, Redzepovic S (2007) Genotypic characterisation of indigenous Rhizobium leguminosarum bv. viciae field population in Croatia. Agric Conspec Sci 72:153–158Google Scholar
  5. Brigido C, Alexandre A, Laranjo M, Oliveira S (2007) Moderately acidophilic mesorhizobia isolated from chickpea. Lett Appl Microbiol 44:168–174PubMedCrossRefGoogle Scholar
  6. Chaudhary P, Dudeja SS, Khurana AL (2001) Chickpea nodulation variants as a tool to detect the population diversity of chickpea rhizobia in soil. Physiol Mol Biol Plant 7:47–54Google Scholar
  7. Chaudhary P, Khurana AL, Dudeja SS (2002) Heterogeneity of rhizobia isolated from chickpea nodulation variants. Indian J Microbiol 42:195–199Google Scholar
  8. Degefu T, Wolde-Meskel E, Liu B, Cleenwerck I, Willems A, Frostegård A (2013) Mesorhizobium shonense sp. nov., Mesorhizobium hawassense sp. nov. and Mesorhizobium abyssinicae sp. nov. isolated from root nodules of different agroforestry legume trees growing in southern Ethiopia. Int J Syst Evol Microbiol, 63:1746–1753Google Scholar
  9. Dudeja SS, Narula N (2008) Molecular diversity of root nodule forming bacteria (Review). In: Khacha-tourians GG, Arora DK, Rajendran TP, Srivastava AK (eds) Agriculturally important microorganisms, vol II. Academic World International, Bhopal, pp 1–24Google Scholar
  10. Dudeja SS, Singh PC (2008) High and low nodulation in relation to molecular diversity of chickpea mesorhizobia in Indian soils. Arch Agron Soil Sci 54:109–120CrossRefGoogle Scholar
  11. Dudeja SS, Nandwani R, Narula N (2009) Molecular diversity of mesorhizobia: particularly rhizobia infecting chickpea. In: Singh DP, Tomar VS, Behl RK, Upadhayaya SD, Bhale MS, Khare D (eds) Proceedings of international conference on sustainable agriculture for food bioenergy & livelihood security, 14–16 Feb 2007. Agrobios International Publishers, Jodhpur, pp 336–347Google Scholar
  12. Dudeja SS, Singh NP et al (2011) Biofertilizer technology and pulses production. In: Singh A, Parmar N, Kuhad RC (eds) Bioaugmentation, biostimulation and biocontrol, Soil biology series. Springer, Berlin/Heidelberg/New York, pp 43–63CrossRefGoogle Scholar
  13. Dudeja SS, Sheokand S, Kumari S (2012a) Legume root nodule development and functioning under tropics and subtropics: perspectives and challenges. Legume Res 35:85–103Google Scholar
  14. Dudeja SS, Giri R, Saini R, Suneja-Madan P, Kothe E (2012b) Interaction of endophytic microbes with legumes. J Basic Microbiol 52:248–260PubMedCrossRefGoogle Scholar
  15. Duodu S, Bhuvaneswari TV, Gudmundsson J, Svenning MM (2005) Symbiotic and saprophytic survival of three unmarked Rhizobium leguminosarum biovar trifolii strains introduced into the field. Environ Microbiol 7:1049–1058PubMedCrossRefGoogle Scholar
  16. Duodu S, Carlsson G, Huss-Danell K, Svenning MM (2007) Large genotypic variation but small variation in N2 fixation among rhizobia nodulating red clover in soils of northern Scandinavia. J Appl Microbiol 102:1625–1635PubMedCrossRefGoogle Scholar
  17. Euzéby JP (2012) “Proteobacteria”. List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2 May 2012
  18. Hoque MS, Broadhurst LM, Thrall PH (2011) Genetic characterisation of root nodule bacteria associated with Acacia salicina and Acacia stenophylla (Mimosaceae) across south eastern Australia. Int J Syst Evol Microbiol 61:299–309PubMedCrossRefGoogle Scholar
  19. ICSP Subcommittee on the taxonomy of Rhizobium and Agrobacterium – diversity, phylogeny and systematics (2013) Rhizobial taxonomy up-to-date Submitted by vinuesa, 20 Jan 2013, 20:23Google Scholar
  20. Jagiriti (2005) Characterization of chickpea, pigeonpea and mungbean rhizobia by RFLP of PCR amplified products. PhD thesis submitted to CCS Haryana Agricultural University, Hisar, IndiaGoogle Scholar
  21. Kaiya S, Rubaba O, Yoshida N, Yamada T, Hiraishi A (2012) Characterization of Rhizobium naphthalenivorans sp. nov. with special emphasis on aromatic compound degradation and multilocus sequence analysis of housekeeping genes. J Gen Appl Microbiol 58:211–224PubMedCrossRefGoogle Scholar
  22. Kan FL, Chen ZY, Wang ET, Tian CF et al (2007) Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai-Tibet plateau and in other zones of China. Arch Microbiol 188:103–115PubMedCrossRefGoogle Scholar
  23. Kaur J, Verma M, Lal R (2011) Rhizobium rosettiformans sp. nov., isolated from a hexachlorocyclohexane dump site, and reclassification of Blastobacter aggregatus Hirsch and Müller 1986 as Rhizobium aggregatum comb. nov. Int J Genet Syst Evol Microbiol 61:1218–1225CrossRefGoogle Scholar
  24. L’taief B, Bouaziz S, Gi M, Mainassara ZA, Mokhtar L (2007) Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Tunisia. Can J Microbiol 53:427–434PubMedCrossRefGoogle Scholar
  25. Laguerre G, Mavingui P, Allard MR, Charnay MP, Louvrier P, Mazurier SI, Rigottier-Gois L, Amarger N (1996) Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol 62:2029–2036PubMedCentralPubMedGoogle Scholar
  26. Laranjo M, Rodrigues R, Alho L, Oliveria S (2001) Rhizobia of chickpea from Southern Portugal: symbiotic efficiency and genetic diversity. J Appl Microbiol 90:662–667PubMedCrossRefGoogle Scholar
  27. Laranjo M, Branco C, Soares R, Alho L, Carvalho MD, Oliveria S (2002) Comparison of chickpea rhizobia isolated from diverse Portuguese natural populations based on symbiotic effectiveness and DNA fingerprinting. J Appl Microbiol 92:1043–1050PubMedCrossRefGoogle Scholar
  28. Laranjo M, Machado J, Young JPW, Oliveira S (2004) High diversity of chickpea Mesorhizobium species isolated in a Portuguese agricultural region. FEMS Microbiol Ecol 48:101–107PubMedCrossRefGoogle Scholar
  29. Lee KD, Bai Y, Smith D, Han HS, Supanjani (2005) Isolation of plant-growth-promoting endophytic bacteria from bean nodules. Res J Agric Biol Sci 1:232–236Google Scholar
  30. Lei X, Wang ET, Chen WF, Sui XH, Chen WX (2008) Diverse bacteria isolated from root nodules of wild Vicia species grown in temperate region of China. Arch Microbiol 190:657–671PubMedCrossRefGoogle Scholar
  31. López-Guerrero M, Ormeño-Orrillo E, Velázquez E, Rogel MA, Acosta JL, González V, Martínez J, Martínez-Romero E (2012) Rhizobium etli taxonomy revised with novel genomic data and analyses. Syst Appl Microbiol 35:353–358PubMedCrossRefGoogle Scholar
  32. López-López A, Rogel MA, Ormeño-Orrillo E, Martínez J, Martínez-Romero E (2011) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium Endophyticum sp. nov. Syst Appl Microbiol 33:322–327CrossRefGoogle Scholar
  33. López-López A, Rogel-Hernández MA, Barois I, Angel IB, Ceballos IO, Julio Martínez J, Ormeño-Orrillo E, Martínez-Romero E (2012) Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica. Int J Syst Evol Microbiol 62:2264–2271PubMedCrossRefGoogle Scholar
  34. Maatallah J, Berraho EB, Munoz S, Sanjuan J, Lluch C (2002) Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Morocco. J Appl Microbiol 93:531–540PubMedCrossRefGoogle Scholar
  35. Mahdhi M, Nzoué A, Gueye F, Merabet C et al (2007) Phenotypic and genotypic diversity of Genista saharae microsymbionts from the infra-arid region of Tunisia. Lett Appl Microbiol 45:604–609PubMedCrossRefGoogle Scholar
  36. Moschetti G, Peluso AL, Protopapa A, Anastasio M, Pepe O, Defez R (2005) Use of nodulation pattern, stress tolerance, nodC gene amplification, RAPD-PCR and RFLP-16S rDNA analysis to discriminate genotypes of Rhizobium leguminosarum biovar viciae. Syst Appl Microbiol 28:619–631PubMedCrossRefGoogle Scholar
  37. Muresu R, Polone E, Sulas L, Baldan B et al (2008) Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol Ecol 63:383–400PubMedCrossRefGoogle Scholar
  38. Mutch LA, Young JP (2004) Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Mol Ecol 8:2435–2444CrossRefGoogle Scholar
  39. Nandwani R, Dudeja SS (2009) Molecular diversity of mesorhizobia in Indian soils. J Basic Microbiol 49:463–470PubMedCrossRefGoogle Scholar
  40. Nandwani R, Dudeja SS (2013) Functional diversity of native mesorhizobial genotypes available in Indian soils of Haryana state which nodulates chickpea. Acta Agron Hung 61(3):207–217Google Scholar
  41. Narula S, Anand RC, Dudeja SS, Kumar V, Pathak DV (2013). Molecular diversity of root and nodule endophytic bacteria from field pea (Pisum sativum L.). Leg Res 36(4):344–350Google Scholar
  42. Nimnoi P, Pongsilp N (2009) Genetic diversity and plant-growth promoting ability of the indole-3-acetic acid (IAA) synthetic bacteria isolated from agricultural soil as well as rhizosphere, rhizoplane and root tissue of Ficus Religiosa L., Leucaena leucocephala and Piper Sarmentosum Roxb. Res J Agric Biol Sci 5:29–41Google Scholar
  43. Nour SM, Cleyet-Marel JC, Back D, Effosse A, Fernandez MP (1994) Genotypic and phenotypic diversity of Rhizobium isolated from Chickpea (Cicer arietinum L.). Can J Microbiol 40:345–354PubMedCrossRefGoogle Scholar
  44. Nour SM, Cleyet-Marel JC, Normand P, Fernandez M (1995) Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol 45:640–648PubMedCrossRefGoogle Scholar
  45. Palmer KM, Young JPW (2000) Higher diversity of Rhizobium leguminosarum biovar viciae populations in arable soils than in grass soils. Appl Environ Microbiol 66:2445–2450PubMedCentralPubMedCrossRefGoogle Scholar
  46. Panday D, Schumann P, Das SK (2011) Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.). Int J Syst Evol Microbiol 61:2632–2639PubMedCrossRefGoogle Scholar
  47. Poinsot V, Bélanger E, Laberge S, Yang GP, Antoun H, Cloutier J, Treilhou M, Dénarié J, Promé JC, Debellé F (2001) Unusual methyl-branched α, ß-unsaturated acyl chain substitutions in the Nod factors of an Arctic Rhizobium, Mesorhizobium sp. Strain N33 (Oxytropic arctobia). J Bacteriol 183:3721–3728PubMedCentralPubMedCrossRefGoogle Scholar
  48. Pulawska J, Willems A, Sobiczewski P (2012) Rhizobium skierniewicense sp. nov., isolated from tumours on chrysanthemum and cherry plum. Int J Syst Evol Microbiol 62:895–899PubMedCrossRefGoogle Scholar
  49. Rachna (2005) Determination of molecular diversity of chickpea rhizobia (Mesorhizobium ciceri). PhD thesis submitted to CCS Haryana Agricultural University, Hisar, IndiaGoogle Scholar
  50. Ramana CV, Parag B, Girija KR, Raghu Ram B, Ramana VV, Sasikala C (2012) Rhizobium subbaraonis sp. nov. an endolithic bacterium isolated from beach sand. Int J Syst Evol Microbiol 63(Pt 2):581–585PubMedCrossRefGoogle Scholar
  51. Ramirez-Bahena MH, Garcia-Fraile P, Peix A, Valverde A, Rivas R, Igual JM, Mateos PF, Martinez-Molina E, Velazquez E (2008) Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 58:2484–2490PubMedCrossRefGoogle Scholar
  52. Ramírez-Bahena MH, Hernández M, Peix A, Velázquez E, León-Barrios M (2012) Mesorhizobial strains nodulating Anagyris latifolia and Lotus berthelotii in Tamadaya ravine (Tenerife, Canary Islands) are two symbiovars of the same species, Mesorhizobium tamadayense sp. nov. Syst Appl Microbiol 35:334–341PubMedCrossRefGoogle Scholar
  53. Ren DW, Chen WF, Sui XH, Wang ET, Chen WX (2011) Rhizobium herbae sp. nov. and Rhizobium giardinii-related bacteria, minor microsymbionts of various wild legumes in China. Int J Syst Evol Microbiol 61:1912–1920CrossRefGoogle Scholar
  54. Ribeiro RA, Rogel MA, López-López A, Ormeño-Orrillo E, Barcellos FG, Martínez J, Thompson FL, Martínez-Romero E, Hungria M (2012) Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp nov. Int J Syst Evol Microbiol 62:1179–1184PubMedCrossRefGoogle Scholar
  55. Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837PubMedCrossRefGoogle Scholar
  56. Saini R, Dudeja SS, Giri R, Kumar V (2013) Isolation, characterization and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. J Basic Microbiol 53:1–8CrossRefGoogle Scholar
  57. Servín-Garcidueñas LE, Rogel MA, Ormeño-Orrillo E, Delgado-Salinas A, Martínez J, Sánchez F, Martínez-Romero E (2012) Genome sequence of Rhizobium sp strain CCGE510, a symbiont isolated from nodules of the endangered wild bean Phaseolus albescens. J Bacteriol 194:6310–6311PubMedCentralPubMedCrossRefGoogle Scholar
  58. Sheokand S, Dudeja SS, Kumari S (2012) Nitrogen fixation in tropical environments – adaptive response and benefits. Res Crops 13:743–753Google Scholar
  59. Stajković O, Sofie DM, Bogić M, Anne W, Dušica D (2009) Isolation and characterization of endophytic non-rhizobial bacteria from root nodules of alfalfa (Medicago sativa L.). Bot Serbica 33:107–114Google Scholar
  60. Strain SR, Leung K, Whittam TS, de Bruijn FJ, Bottomley PJ (1994) Genetic structure of Rhizobium leguminosarum biovar trifolii and viciae populations found in two Oregon soils under different plant communities. Appl Environ Microbiol 60:2772–2778PubMedCentralPubMedGoogle Scholar
  61. Sturz AV, Christie BR (1995) Endophytic bacterial systems governing red clover growth and development. Ann Appl Biol 126:285–290CrossRefGoogle Scholar
  62. Sturz AV, Christie BR (1996) Endophytic bacteria of red clover as agents of allelopathic clover-maize syndromes. Soil Biol Biochem 28:583–588CrossRefGoogle Scholar
  63. Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190CrossRefGoogle Scholar
  64. Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonized clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13–19CrossRefGoogle Scholar
  65. Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424PubMedCrossRefGoogle Scholar
  66. Tan ZY, Xu XD, Wang ET, Gao JL, Martinez-Romero E, Chen WX (1997) Phylogenetic and genetic relationship of Mesorhizobium tianshanense and related rhizobia. Int J Syst Bacteriol 47:874–879PubMedCrossRefGoogle Scholar
  67. Turdahon M, Osman G, Hamdun M, Yusuf K, Abdurehim Z, Abaydulla G, Abdukerim M, Fang C, Rahman E (2012) Rhizobium tarimense sp. nov. isolated from soil in the ancient Khiyik river of Xinjiang, China. Int J Syst Evol Microbiol 63:2424–2429PubMedCrossRefGoogle Scholar
  68. Velázquez E, Peix A, Zurdo-Piñeiro JL, Palomo JL, Mateos PF, Rivas R, Muñoz-Adelantado E, Toro N, García-Benavides P, Martínez-Molina E (2005) The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hairy roots in plants. Mol Plant Microbe Interact 18:1325–1332PubMedCrossRefGoogle Scholar
  69. Wadhwa K, Dudeja SS, Yadav RK (2011) Molecular diversity of native field pea rhizobia trapped by five contrasting field pea genotypes in Indian soils. J Basic Microbiol 51:89–97PubMedCrossRefGoogle Scholar
  70. Wang F, Wang ET, Wu LJ, Sui XH, Li Y, Chen WX (2011) Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. Int J Genet Syst Evol Microbiol 61:2582–2588CrossRefGoogle Scholar
  71. Weir BS (2012) The current taxonomy of rhizobia. New Zealand rhizobia website ( Updated 13 April 2012
  72. Wen Y, Zhang J, Yan Q, Li S, Hong Q (2011) Rhizobium phenanthrenilyticum sp. nov., a novel phenanthrene-degrading bacterium isolated from a petroleum residue treatment system. J Gen Appl Microbiol 57:319–329PubMedCrossRefGoogle Scholar
  73. Xu L, Zhang Y, Deng ZS, Zhao L, Wei XL, Wei GH (2012) Rhizobium qilianshanense sp. nov., a novel species isolated from root nodule of Oxytropis ochrocephala Bunge in China. Antonie Van Leeuwenhoek 103(3):559–565PubMedCrossRefGoogle Scholar
  74. Yang C, Yang J, Li Y, Zhou J (2008) Genetic diversity of root-nodulating bacteria isolated from pea (Pisum sativum) in subtropical regions of China. Sci China Ser C-Life Sci 51:854–862CrossRefGoogle Scholar
  75. Yao Li Juan, Shen YY, Zhan JP, Xu W, Cui GL, Wei GH (2012) Rhizobium taibaishanense sp. nov., isolated from a root nodule of Kummerowia striata. Int J Syst Evol Microbiol 62:335–341PubMedCrossRefGoogle Scholar
  76. Young JPW, Demetriou L, Apte RG (1987) Rhizobium population genetics: enzyme polymorphism in Rhizobium leguminosarum from plants and soil in a pea crop. Appl Environ Microbiol 53:397–402PubMedCentralPubMedGoogle Scholar
  77. Zakhia F, Jeder H, Domergue O, Willems A et al (2006) Characterisation of wild legume nodulating bacteria (LNB) in the infraarid zone of Tunisia. Syst Appl Microbiol 27:380–395CrossRefGoogle Scholar
  78. Zézé A, Mutch LA, Young JPW (2001) Direct amplification of nodD from community DNA reveals the genetic diversity of Rhizobium leguminosarum in soil. Environ Microbiol 3:363–370PubMedCrossRefGoogle Scholar
  79. Zhang RJ, Hou BC, Wang ET, Li Y, Zhang XX, Chen WX (2011) Rhizobium tubonense sp. nov., a symbiotic bacterium isolated from root nodules of Oxytropis glabra grown in Tibet, China. Int J Syst Evol Microbiol 61:512–517PubMedCrossRefGoogle Scholar
  80. Zhang JJ, Liu TY, Chen WF, Wang ET, Sui XH, Zhang XX, Li Y, Li Y, Chen WX (2012) Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. in Xinjiang, China. Int J Syst Evol Microbiol 62 (Pt 11):2737–2742PubMedCrossRefGoogle Scholar
  81. Zheng WT, Li Y Jr, Wang R, Sui XH, Zhang XX, Zhang JJ, Wang ET, Chen WX (2012) Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus grown in the Southeast of China. Int J Syst Evol Microbiol 63(Pt 6):2002–2007, PubMed PMID: 23041644PubMedCrossRefGoogle Scholar
  82. Zhou S, Li Q, Jiang H, Lindström K, Zhang X (2013) Mesorhizobium sangaii sp. nov., isolated from the root nodules of Astragalus luteolus and Astragalus ernestii. Int J Syst Evol Microbiol 63(Pt 8):2794–2799PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  1. 1.Department of MicrobiologyCCS Haryana Agricultural UniversityHisarIndia
  2. 2.Department of BiotechnologyMaharishi Dayanand UniversityRohtakIndia

Personalised recommendations