Emerging Dynamics of Brassinosteroids Research

  • Isha Sharma
  • Navdeep Kaur
  • Shivani Saini
  • Pratap Kumar Pati


Brassinosteroids are a class of naturally occurring steroidal compounds that play vital role in plant growth and development. Extensive research on BRs biosynthesis, distribution, signal perception, and transduction has broadened our understanding about this important phytohormone. The mode of action of brassinosteroids involves the perception of its signal by the cell surface receptor and the subsequent activation of downstream transcription factors and genes. Development of modern tools, availability of biological resources, and use of genetic, biochemical, and proteomic approaches have greatly advanced our understanding on the key regulatory elements in the BRs signaling networks. At present, brassinosteroids are implicated in various important functions in plants such as growth and development as well as stress amelioration. However, further advancement of knowledge in the area will enable scientists to precisely answer some key fundamental questions related to its versatile roles in plants.


Bri1 Mutant Island Domain Pollen Wall Formation Constitutive Photomorphogenesis Inhibit BRI1 Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Isha Sharma was supported by grants received from University Grants Commission (UGC), New Delhi. Navdeep Kaur is a recipient of DBT-JRF fellowship from the Department of Biotechnology, New Delhi, and Shivani Saini was supported by Innovation in Science Pursued for Inspired Research (INSPIRE) Program and Department of Science and Technology, New Delhi.


  1. Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, Chinchilla D, Rathjen JP, de Vries SC, Zipfel C (2012) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc Natl Acad Sci U S A 109:303–308PubMedCentralPubMedCrossRefGoogle Scholar
  2. Azpiroz R, Wu Y, LoCascio JC, Feldmann KA (1998) An Arabidopsis brassinosteroid- dependent mutant is blocked in cell elongation. Plant Cell 10:219–230PubMedCentralPubMedGoogle Scholar
  3. Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8PubMedGoogle Scholar
  4. Belkhadir Y, Jaillais Y, Epple P, Balsemao–Pires E, Dangl JL, Chory J (2011) Brassinosteroids modulate the efficiency of plant immune responses to microbe- associated molecular patterns. Proc Natl Acad Sci U S A 109:297–302PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bell EM, Lina W, Husbandsa AY, Yua L, Jaganathaa V, Jablonskaa B, Mangeona A, Neffb MM, Girkea T, Springera PS (2012) Arabidopsis lateral organ boundaries negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. Proc Natl Acad Sci U S A 109:21146–21151PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bishop GJ, Harrison K, Jones JDG (1996) The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome p450 family. Plant Cell 8:959–969PubMedCentralPubMedGoogle Scholar
  7. Cano-Delgado A, Yin Y, Vafeados D, Mora-Garcia S, Cheng J-C, Nam KH, Li J, Chory J (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341–5351PubMedCrossRefGoogle Scholar
  8. Che P, Bussell JD, Zhou W, Estavillo GM, Pogson BJ, Smith SM (2010) Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis. Sci Signal 3:ra69PubMedCrossRefGoogle Scholar
  9. Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T, Jones JD, Felix G, Boller T (2007) A Flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defense. Nature 448:497–500PubMedCrossRefGoogle Scholar
  10. Choudhary SP, Oral HV, Bhardwaj R, Yu J, Tran LP (2012) Interaction of brassinosteroids and polyamine enhances copper stress tolerance in Raphanus sativus. J Exp Bot 63:5659–5675PubMedCrossRefGoogle Scholar
  11. Chung Y, Maharjan PM, Lee O, Fujioka S, Jang S, Kim B, Takatsuto S, Tsujimoto M, Kim H, Cho S, Park T, Cho H, Hwang I, Choe S (2011) Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. Plant J 66:564–578PubMedCrossRefGoogle Scholar
  12. Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23:1219–1230PubMedCentralPubMedCrossRefGoogle Scholar
  13. Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451PubMedGoogle Scholar
  14. Clouse SD, Langford M, McMorris TC (1996) A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678PubMedCentralPubMedCrossRefGoogle Scholar
  15. Cui F, Liu L, Zhao Q, Zhang Z, Li Q, Lin B, Wu Y, Tang S, Xie Q (2012) Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid- mediated salt stress tolerance. Plant Cell. doi:http://dx.doi.org/10.1105/tpc.111.093062
  16. Davies PJ (1995) The plant hormones: their nature, occurrence and functions. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology. Kluwer Academic Publishers, Dordrecht, pp 1–15CrossRefGoogle Scholar
  17. Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ (2007) Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134:2841–2850PubMedCrossRefGoogle Scholar
  18. Fridman Y, Savaldi-Goldstein S (2013) Brassinosteroids in growth control: how, when and where. Plant Sci 209:24–31PubMedCrossRefGoogle Scholar
  19. Friedrichsen DM, Joazeiro CA, Li J, Hunter T, Chory J (2000) Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine rich repeat receptor serine/threonine kinase. Plant Physiol 123:1247–1256PubMedCentralPubMedCrossRefGoogle Scholar
  20. Fujioka S, Sakurai A (1997) Biosynthesis and metabolism of brassinosteroids. Physiol Plant 100:710–715CrossRefGoogle Scholar
  21. Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164PubMedCrossRefGoogle Scholar
  22. Gao M, Wang X, Wang D, Xu F, Ding X, Zhang Z, Bi D, Cheng YT, Chen S, Li X, Zhang Y (2009) Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe 6:34–44PubMedCrossRefGoogle Scholar
  23. Gendron GM, Liua J, Fana M, Baia M, Wenkela S, Springerb PS, Bartona MK, Wanga Z (2012) Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proc Natl Acad Sci U S A 109:21152–21157PubMedCentralPubMedCrossRefGoogle Scholar
  24. Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130:1319–1334PubMedCentralPubMedCrossRefGoogle Scholar
  25. Gonzalez-Garcia MP, Vilarrasa-Blasi J, Zhiponova M, Divol F, Mora-Garcia S, Russinova E, Cano-Delgado AI (2011) Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138:849–859PubMedCrossRefGoogle Scholar
  26. Gudesblat GE, Russinova E (2011) Plants grow on brassinosteroids. Curr Opin Plant Biol 14:530–537PubMedCrossRefGoogle Scholar
  27. Guo Z, Fujioka S, Blancaflor EB, Miao S, Gou X, Li J (2010) TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell 22:1161–1173PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hao J, Yin Y, Fei S (2013) Brassinosteroid signaling network: implications on yield and stress tolerance. Plant Cell Rep 32:1017–1030PubMedCrossRefGoogle Scholar
  29. Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ Pollut 151:60–66PubMedCrossRefGoogle Scholar
  30. He Z, Wang ZY, Li J, Zhu Q, Lamb C, Ronald P, Chory J (2000) Perception of brassinosteroids by the receptor kinase BRI1. Nature 474:467–471Google Scholar
  31. He JX, Gendron JM, Yang Y, Li J, Wang ZY (2002) The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci U S A 99:10185–10190PubMedCentralPubMedCrossRefGoogle Scholar
  32. He JX, Gendron JM, Sun Y, Gampala SS, Gendron N et al (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638PubMedCentralPubMedCrossRefGoogle Scholar
  33. Heese A, Hann DR, Gimenez-Ibanez S, Jones AM, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Sci Signal 104:12217Google Scholar
  34. Hofiusa D, Dimitrios I, Tsitsigiannis T, Jonathan DG, Mundy JJ (2007) Inducible cell death in plant immunity. Semin Cancer Biol 17:166–187CrossRefGoogle Scholar
  35. Hothorn M, Belkhadir Y, Dreux M, Dabi T, Noel JP, Wilson IA, Chory J (2011) Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature 474:467–472PubMedCentralPubMedCrossRefGoogle Scholar
  36. Irani NG, Rubbo SD, Mylle E, Begin JV, Schneider-Pizon J, Hnilikova J, Sisa M, Buyst D, Vilarrasa-Blasi J, Szatmári A, Damme DV, Mishev K et al (2012) Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. Nat Chem Biol 8:583–589PubMedCrossRefGoogle Scholar
  37. Jaillais Y, Hothorn M, Belkhadir Y, Dabi T, Nimchuk ZL, Meyerowitz EM, Chory J (2011) Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes Dev 25:232–237PubMedCrossRefGoogle Scholar
  38. Janssens V, Longin S, Goris J (2008) PP2A holoenzyme assembly: in Cauda venenum (the sting is in the tail). Trends Biochem Sci 33:113–121PubMedCrossRefGoogle Scholar
  39. Je BI, Piao HL, Park SJ, Park SH, Kim CM, Xuan YH, Huang J, Do Choi Y, An G, Wong HL, Fujioka S, Kim MC, Shimamoto K, Han CD (2010) RAV-Like1 maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice. Plant Cell 22:1777–1791PubMedCentralPubMedCrossRefGoogle Scholar
  40. Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364PubMedCrossRefGoogle Scholar
  41. Kauschmann A, Jessop A, Koncz C, Szekeres M, Willmitzer L, Altmann T (1996) Genetic evidence for an essential role of brassinosteroids in plant development. Plant J 9:701–713CrossRefGoogle Scholar
  42. Kerr I, Carrier D, Twycross J (2011) Hormone transport. In: Murphy AS, Schulz B, Peer W (eds) The plant plasma membrane. Springer, Berlin, pp 379–397CrossRefGoogle Scholar
  43. Kim T, Wang Z (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704PubMedCrossRefGoogle Scholar
  44. Kim TW, Guan S, Sun Y, Deng Z, Tang W, Shang JX, Sun Y, Burlingame AL, Wang ZY (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11:1254–1260PubMedCentralPubMedCrossRefGoogle Scholar
  45. Kim TW, Guan S, Burlingame AS, Wang ZY (2011) The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Mol Cell 43:561–571PubMedCentralPubMedCrossRefGoogle Scholar
  46. Kinoshita T, Cano-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433:167–171PubMedCrossRefGoogle Scholar
  47. Li J (2010) Multi-tasking of somatic embryogenesis receptor-like protein kinases. Curr Opin Plant Biol 13:509–514PubMedCrossRefGoogle Scholar
  48. Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938PubMedCrossRefGoogle Scholar
  49. Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light- dependent development of Arabidopsis. Science 272:398–401PubMedCrossRefGoogle Scholar
  50. Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222PubMedCrossRefGoogle Scholar
  51. Maharajan PM, Choe S (2011) High temperature stimulates DWARF4 (DWF4) expression to increase hypocotyl elongation in Arabidopsis. J Plant Biol 54:425–429CrossRefGoogle Scholar
  52. Mandava NB (1988) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39:23–52Google Scholar
  53. Markovic-Housley Z, Degano M, Lamba D, von Roepenack-Lahaye E, Clemens S, Susani M, Ferreira F, Scheiner O, Breiteneder H (2003) Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier. Plant Mol Biol 325:123–133Google Scholar
  54. Marsolais F, Boyd J, Paredes Y, Schinas AM, Garcia M, Elzein S, Varin L (2007) Molecular and biochemical characterization of two brassinosteroid sulfotransferases from Arabidopsis, AtST4a (At2g14920) and AtST1 (At2g03760). Planta 225:1233–1244PubMedCrossRefGoogle Scholar
  55. Mora-Garcia S, Vert G, Yin Y, Cano-Delgado A, Cheong H, Chory J (2004) Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Dev 18:448–460PubMedCrossRefGoogle Scholar
  56. Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443:458–461PubMedCrossRefGoogle Scholar
  57. Mussig C, Fischer S, Altman T (2002) Brassinosteroid-regulated gene expression. Plant Physiol 129(3):1241–1251PubMedCentralPubMedCrossRefGoogle Scholar
  58. Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212PubMedCrossRefGoogle Scholar
  59. Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395PubMedCrossRefGoogle Scholar
  60. Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA, Tax FE (1999) Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121:743–752PubMedCentralPubMedCrossRefGoogle Scholar
  61. Noguchi T, Fujioka S, Choe S, Takatsuto S, Tax FE, Yoshida S, Feldmann KA (2000) Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol 124:201–209PubMedCentralPubMedCrossRefGoogle Scholar
  62. Nole-Wilson S, Rueschhoff EE, Bhatti H, Franks RG (2010) Synergistic disruptions in seuss cyp85A2 double mutants reveal a role for brassinolide synthesis during gynoecium and ovule development. BMC Plant Biol 10:198PubMedCentralPubMedCrossRefGoogle Scholar
  63. Nomura T, Bishop GJ (2006) Cytochrome P450s in plant steroid hormone synthesis and metabolism. Phytochem Rev 5:421–432CrossRefGoogle Scholar
  64. Oh MH, Wang X, Wu X, Zhao Y, Clouse SD, Huber SC (2010) Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression. Proc Natl Acad Sci U S A 107:17827–17832PubMedCentralPubMedCrossRefGoogle Scholar
  65. Oh MH, Wu X, Clouse SD, Huber SC (2011) Functional importance of BAK1 tyrosine phosphorylation in vivo. Plant Signal Behav 6:400–405PubMedCentralPubMedCrossRefGoogle Scholar
  66. Oh MH, Kim HS, Wu X, Clouse SD, Zielinski RE, Huber SC (2012a) Calcium/calmodulin inhibition of the Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase provides a possible link between calcium and brassinosteroid signalling. Biochem J 443:515–523PubMedCentralPubMedCrossRefGoogle Scholar
  67. Oh MH, Wang X, Clouse SD, Huber SC (2012b) Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycine-rich loop. Proc Natl Acad Sci U S A 109:327–332PubMedCentralPubMedCrossRefGoogle Scholar
  68. Ohnishi ST, Godza B, Watanabe B, Fujioka S, Hategan L, Ide K, Shibata K, Yokota K, Szekeres M, Mizutani M (2012) CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. J Biol Chem 287:31551–31560PubMedCrossRefGoogle Scholar
  69. Park CH, Kim TW, Son SH, Hwang JY, Lee SC, Chang SC, Kim SH, Kim SW, Kim SK (2010) Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana. Phytochemistry 71:380–387PubMedCrossRefGoogle Scholar
  70. Peng P, Zhao J, Zhu Y, Asami T, Li J (2010) A direct docking mechanism for a plant GSK3-like kinase to phosphorylate its substrates. J Biol Chem 285:24646–24653PubMedCrossRefGoogle Scholar
  71. Poppenberger B, Rozhon W, Khan M, Husar S, Adam G, Luschnig C, Fujioka S, Sieberer T (2011) CESTA, a positive regulator of brassinosteroid biosynthesis. EMBO J 30:1149–1161PubMedCrossRefGoogle Scholar
  72. Roh H, Jeong CW, Fujioka S, Kim YK, Lee S, Ahn JH, Choi YD, Lee JS (2012) Genetic evidence for the reduction of brassinosteroid levels by a BAHD acyltransferase-like protein in Arabidopsis. Plant Physiol 159:696–709PubMedCentralPubMedCrossRefGoogle Scholar
  73. Russinova E, Borst JW, Kwaaitaal M, Cano-Delgado A, Yin Y, Chory J, Vries SC (2004) Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and SERK3 (BAK1). Plant Cell 16:3216–3229PubMedCentralPubMedCrossRefGoogle Scholar
  74. Ryu H, Kim K, Hwang I (2008) Spatial redistribution of key transcriptional regulators in brassinosteroid signaling. Plant Signal Behav 3:278–280PubMedCentralPubMedCrossRefGoogle Scholar
  75. Ryu H, Kim K, Cho H, Hwang I (2010) Predominant actions of cytosolic BSU1 and nuclear BIN2 regulate subcellular localization of BES1 in brassinosteroid signaling. Mol Cells 29:291–296PubMedCrossRefGoogle Scholar
  76. Sakurai A, Fujioka S (1997) Studies on biosynthesis of brassinosteroids. Biosci Biotechnol Biochem 61:757–762PubMedCrossRefGoogle Scholar
  77. Schwessinger B, Roux M, Kadota Y, Ntoukakis V, Sklenar J, Jones A, Zipfel C (2011) Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet 7:e1002046PubMedCentralPubMedCrossRefGoogle Scholar
  78. Sharma I, Bhardwaj R, Pati PK (2012) Mitigation of adverse effects of chlorpyrifos by 24- epibrassinolide and analysis of stress markers in a rice variety Pusa Basmati-1. Ecotoxicol Environ Safe 8:72–81CrossRefGoogle Scholar
  79. Sharma I, Bhardwaj R, Pati PK (2013a) Stress modulation response of 24-epibrassinolide against imidacloprid in an elite Indica rice variety Pusa Basmati-1. Pest Biochem Physiol 105:144–153CrossRefGoogle Scholar
  80. Sharma I, Ching E, Saini S, Bhardwaj R, Pati PK (2013b) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Biochem 69:17–26PubMedGoogle Scholar
  81. She J, Han Z, Kim TW, Wang J, Cheng W, Chang J, Shi S, Yang M, Wang ZY, Chai J (2011) Structural insight into brassinosteroid perception by BRI1. Nature 474:472–476PubMedCrossRefGoogle Scholar
  82. Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organ-specific expression of brassinosteroid biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131:287–297PubMedCentralPubMedCrossRefGoogle Scholar
  83. Sui P, Jin J, Ye S, Mu C, Gao J, Feng H, Shen WH, Yu Y, Dong A (2012) H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice. Plant J 70:340–347PubMedCrossRefGoogle Scholar
  84. Sun Y, Fan XY, Cao DM, Tang W et al (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777PubMedCentralPubMedCrossRefGoogle Scholar
  85. Symons GM, Reid JB (2004) Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol 135:2196–2206PubMedCentralPubMedCrossRefGoogle Scholar
  86. Symons GM, Ross JJ, Jager CE, Reid JB (2008) Brassinosteroid transport. J Exp Bot 59:17–24PubMedCrossRefGoogle Scholar
  87. Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A et al (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182PubMedCrossRefGoogle Scholar
  88. Tanaka K, Asami T, Yoshida S, Nakamura Y, Matsuo T, Okamoto S (2005) Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol 138:1117–1125PubMedCentralPubMedCrossRefGoogle Scholar
  89. Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557–560PubMedCentralPubMedCrossRefGoogle Scholar
  90. Tang W, Yuan M, Wang R, Yang Y, Wang C et al (2011) PP2A activates brassinosteroid- responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol 13:124–131PubMedCentralPubMedCrossRefGoogle Scholar
  91. Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres QI, Ward JM, Murthy G, Zhang J, Walker JC, Neff MM (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J 42:23–34PubMedCrossRefGoogle Scholar
  92. Vardhini BV, Sujatha E, Rao SSR (2011) Brassinosteroids: alleviation of water stress in certain enzymes of sorghum seedlings. J Phytol 3:38–43Google Scholar
  93. Vriet C, Russinova E, Reuzeaua C (2012) Boosting crop yields with plant steroids. Plant Cell 24:842–857PubMedCentralPubMedCrossRefGoogle Scholar
  94. Wang X, Chory J (2006) Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313:1118–1122PubMedCrossRefGoogle Scholar
  95. Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410:380–383PubMedCrossRefGoogle Scholar
  96. Wang X, Goshe MB, Soderblom EJ, Phinney BS, Kuchar JA et al (2005) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. Plant Cell 17:1685–1703PubMedCentralPubMedCrossRefGoogle Scholar
  97. Wang L, Xu Y, Zhang C, Ma Q, Joo SH, Kim SK, Xu Z, Chong K (2008a) OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS ONE 3:e3521PubMedCentralPubMedCrossRefGoogle Scholar
  98. Wang X, Kota U, He K, Blackburn K, Li J et al (2008b) Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell 15:220–235PubMedCrossRefGoogle Scholar
  99. Wang H, Nagegowda DA, Rawat R, Bouvier-Nave P, Guo D, Bach TJ, Chye ML (2012a) Overexpression of Brassica juncea wild-type and mutant HMG-CoA synthase 1 in Arabidopsis upregulates genes in sterol biosynthesis and enhances sterol production and stress tolerance. Plant Biotechnol J 10:31–42PubMedCrossRefGoogle Scholar
  100. Wang ZY, Bai MY, Oh E, Zhu JY (2012b) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701–724PubMedCrossRefGoogle Scholar
  101. Wu G, Wang X, Li X, Kamiya Y, Otegui MS, Chory J (2011) Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Sci Signal 4:ra29PubMedCrossRefGoogle Scholar
  102. Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen ZX, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid—induced stress tolerance in cucumber. Plant Physiol 150:801–814PubMedCentralPubMedCrossRefGoogle Scholar
  103. Ye Q, Zhu W, Li L, Zhang S, Yin Y, Ma H, Wang X (2010) Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc Natl Acad Sci U S A 107:6100–6105PubMedCentralPubMedCrossRefGoogle Scholar
  104. Ye H, Li L, Yin Y (2011) Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways. J Int Plant Biol 53:455–468CrossRefGoogle Scholar
  105. Yin YH, Wang ZY, Mora-Garcia S, Li JM, Yoshida S, Asami T, Chory J (2002) BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109:181–191PubMedCrossRefGoogle Scholar
  106. Yin Y, Vafeados D, Tao Y, Yokoda T, Asami T, Chory J (2005) A new class of transcription factors mediate brassinosteroid-regulated gene expression in Arabidopsis. Cell 120:249–259PubMedCrossRefGoogle Scholar
  107. Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P, Rodermel S, Yin Y (2011) A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J 65:634–646PubMedCrossRefGoogle Scholar
  108. Yuan T, Fujioka S, Takatsuto S, Matsumoto S, Gou X, He K, Russell SD, Li J (2007) BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in Arabidopsis thaliana. Plant J 51:220–233PubMedCrossRefGoogle Scholar
  109. Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X et al (2010) Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by Pseudomonas syringae effector. Cell Host Microb 7:290–301CrossRefGoogle Scholar
  110. Zhang C, Xu Y, Guo S, Zhu J, Huan Q et al (2012) Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet 8:e1002686PubMedCentralPubMedCrossRefGoogle Scholar
  111. Zhao B, Li J (2012) Regulation of brassinosteroid biosynthesis and inactivation. J Integr Plant Biol 54:746–759PubMedCrossRefGoogle Scholar
  112. Zhou A, Wang H, Walker JC, Li J (2004) BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. Plant J 40:399–409PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2013

Authors and Affiliations

  • Isha Sharma
    • 1
  • Navdeep Kaur
    • 1
  • Shivani Saini
    • 1
  • Pratap Kumar Pati
    • 1
  1. 1.Department of BiotechnologyGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations