Advertisement

Quantum Dot Gate Field-Effect Transistors: Theory and Device Modeling

  • Supriya Karmakar
Chapter

Abstract

The device model of the QDGFET and its theory are discussed in Chapter 4. The modification of band diagram of QDGFET due to the presence of quantum dots in the gate region is shown in this chapter. The theory of operation based on self-consistent solution of Schrödinger and Poisson equations is also presented in this chapter.

Keywords

Threshold Voltage Gate Voltage Gate Insulator Energy Band Diagram Free Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cobbold, R.S.C.: Theory and Applications of Field-Effect Transistors. Wiley-Interscience, New-York (1970). MOSFET band diagram and theory of operationGoogle Scholar
  2. 2.
    Kahng, D.: A historical perspective on the development of MOS transistors and related devices. IEEE Trans. Electron Devices 23(7), 655–657 (1976)CrossRefGoogle Scholar
  3. 3.
    Sah, C.T.: Characteristics of the metal-oxide-semiconductor transistor. IEEE Trans. Electron Devices 11(7), 324–345 (1964)CrossRefGoogle Scholar
  4. 4.
    Sah, Chih-Tang: A history of MOS transistor compact modeling. In: 2005 Nanotechnology Conference, Presentation Slides.Google Scholar
  5. 5.
    Frohman-Bentchkowsky, D., Vadasz, L.: Computer-aided design and characterization of digital MOS integrated circuits. IEEE J. Solid-State Circuits 4(2), 57–64 (1969)CrossRefGoogle Scholar
  6. 6.
    Jain, F., Papadimitrakopoulos, F.: Site-specific nanoparticle self-assembly. US Patent 7,368,370, 2008Google Scholar
  7. 7.
    Jain, F.C., Heller, E., Karmakar, S., Chandy, J.: Device and circuit modeling using novel 3-state quantum dot gate FETs. In: International Semiconductor Device Research Symposium, College Park, 12–15 Dec 2007Google Scholar
  8. 8.
    Chuang, S., Holonyak, N.: Efficient quantum well to quantum dot tunneling: analytical solutions. Appl. Phys. Lett. 80, 1270–1272 (2002)CrossRefGoogle Scholar
  9. 9.
    Hasaneen, E.-S., Heller, E., Bansal, R., Jain, F.: Modeling of nonvolatile floating gate quantum dot memory. Solid State Electron. 48, 2055–2059 (2004)CrossRefGoogle Scholar
  10. 10.
    Maserjian, J., Petersson, G.: Tunneling through thin MOS structures: dependence on energy. Appl. Phys. Lett. 25, 50–52 (1974)CrossRefGoogle Scholar
  11. 11.
    Grabert, H., et al.: Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures. Series B: Physics, NATO ASI Series, vol. 294. Plenum Press, New York (1992)CrossRefGoogle Scholar
  12. 12.
    Maserjian, J.: Tunneling in thin MOS structures. J. Vac. Sci. Technol. 11(6), 996–1003 (1974)CrossRefGoogle Scholar
  13. 13.
    Sune, J., Olivo, P., Ricco, B.: Quantum-mechanical modeling of accumulation layers in MOS structure. IEEE Trans. Electron Devices 39, 1732–1739 (1992)CrossRefGoogle Scholar
  14. 14.
    Weinberg, Z.A.: On tunneling in metal-oxide silicon structures. J. Appl. Phys. 53(7), 5052–5056 (1982)CrossRefGoogle Scholar
  15. 15.
    Register, L.F., et al.: Analytic model for direct tunneling in polycrystalline silicon-gate metal-oxide semiconductor devices. Appl. Phys. Lett. 74(3), 457–459 (1999)CrossRefGoogle Scholar
  16. 16.
    Lenzlinger, M., Snow, E.H.: Fowler–Nordheim tunneling into thermally grown SiO2. J. Appl. Phys. 40(1), 278–283 (1969)CrossRefGoogle Scholar
  17. 17.
    Karmakar, S., Suarez, E., Jain, F.: Quantum dot gate three state FETs using ZnS – ZnMgS lattice-matched gate insulator on silicon. J. Electron. Mater. 40(8), 1749–1756 (2011)CrossRefGoogle Scholar
  18. 18.
    Karmakar, S., Gogna, M., Jain, F.C.: Improved device structure of quantum dot gate FET to get more stable intermediate state. Electron. Lett. 48(24), 1556–1557 (2012)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Supriya Karmakar
    • 1
  1. 1.Intel CorporationHillsboroUSA

Personalised recommendations