Quantum Dot Gate Field-Effect Transistors: Fabrication and Characterization

  • Supriya Karmakar


Chapter 3 discusses different fabrication steps and characterization results of QDGFETs. Characterization of different quantum dots as well as gate insulator layer is also presented in this chapter. Transfer characteristics and output characteristics of QDGFETs are also presented in this chapter. The improvement of subthreshold swing in SOI (silicon-on-insulator) is also demonstrated in this chapter.


Gate Voltage Subthreshold Swing Gate Region Inversion Channel Applied Gate Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kern, W.A., Poutinen, D.A.: The measurement of effective complex refractive indices for selected metal silicides. RCA Rev. 31, 187 (1970)Google Scholar
  2. 2.
    dos Santos Filho, S.G., Hasenack, C.M., Salay, L.C., Mertens, P.: A less critical cleaning procedure for silicon wafer using diluted HF dip and boiling in isopropyl alcohol as final steps. J. Electrochem. Soc. 142(3), 902–907 (1995)CrossRefGoogle Scholar
  3. 3.
    Gandhi, S.K.: The Theory and Practice of Microelectronics. Wiley, New York (1968)Google Scholar
  4. 4.
    Crank, J.: The Mathematics of Diffusion. Oxford University Press, Walton Street, Oxford (1956)Google Scholar
  5. 5.
    Grove, A.S.: Physics and Technology of Semiconductor Devices. Wiley, New York (1967)Google Scholar
  6. 6.
    Fair, R.B.: On the role of self‐interstitials in impurity diffusion in silicon. J. Appl. Phys. 51, 5828 (1980)CrossRefGoogle Scholar
  7. 7.
    Doremus, R.H.: Oxidation of silicon by water and oxygen and diffusion in fused silica. J. Phys. Chem. 80(16), 1773–1775 (1976)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1981)Google Scholar
  9. 9.
    Jain, F.C., Suarez, E., Gogna, M., AlAmoody, F., Butkiewicus, D., Hohner, R., Liaskas, T., Karmakar, S., Chan, P.Y., Miller, B., Chandy, J., Heller, E.: Novel quantum dot gate FETs and nonvolatile memories using lattice-matched II-VI gate insulators. J. Electron. Mater. 38(8), 1574–1578 (2009)CrossRefGoogle Scholar
  10. 10.
    Karmakar, S., Suarez, E., Jain, F.: Quantum dot gate three state FETs using ZnS – ZnMgS lattice-matched gate insulator on silicon. J. Electron. Mater. 40(8), 1749–1756 (2011)CrossRefGoogle Scholar
  11. 11.
    Phely-Bobin, T., Chattopadhyay, D., Papadimitrakopoulos, F.: Characterization of mechanically attrited Si/SiOx nanoparticles and their self-assembled composite films. Chem. Mater. 14, 1030–1036 (2002)CrossRefGoogle Scholar
  12. 12.
    Jain, F., Papadimitrakopoulos, F.: Site-specific nanoparticle self-assembly. US Patent 7,368,370, 2008Google Scholar
  13. 13.
    Occelli, M.L., Gould, S.A.C.: The use of atomic force microscopy (AFM) to study the surface topography of commercial fluid cracking catalysts (FCCs) and pillared interlayered clay (PILC) catalysts. In: Studies in Surface Science and Catalysis. Proceedings of the American Chemical Society Petroleum Division Conference: Fluid Catalytic Cracking VI, Philadelphia, Pennsylvania, USA, 149, 71–104 (2004)Google Scholar
  14. 14.
    Schiraldi, D.A., Occelli, M.L., Gould, S.A.C.: Applications of atomic force microscopy to current problems in industrial polyester chemistry. Polym. News 27(6), 195–200 (2002)Google Scholar
  15. 15.
    Schiraldi, D.A., Occelli, M.L., Gould, S.A.C.: Atomic force microscopy (AFM) study of poly(ethylene terephthalate-co-4, 4′-bibenzoate): a polymer of intermediate structure. J. Appl. Polym. Sci. 82(11), 2616–2623 (2001)CrossRefGoogle Scholar
  16. 16.
    Occelli, M.L., Gould, S.A.C.: Examination of coked surfaces of pillared rectorite catalysts with the atomic force microscope. J. Catal. 198(1), 41–46 (2001)CrossRefGoogle Scholar
  17. 17.
    Fultz, B., Howe, J.M.: Transmission Electron Microscopy and Diffractometry of Materials, 3rd ed., Springer, Berlin Heidelberg New York (2008). Corr. 2nd printing, 2008Google Scholar
  18. 18.
    Warren, B.E.: X-ray Diffraction. General, Dover Publications Inc., New York (1969/1990)Google Scholar
  19. 19.
    Cullity, B.D.: Elements of X-ray Diffraction, 2nd edn. Addison-Wesley, Reading (1978)Google Scholar
  20. 20.
    Als-Nielsen, J., McMorrow, D.: Elements of Modern X-ray Physics. Wiley, New York (2001)Google Scholar
  21. 21.
    Bowen, D.K., Tanner, B.K.: High Resolution X-ray Diffractometry and Topography. Taylor & Francis, London/Bristol (1998)Google Scholar
  22. 22.
    Suarez, E., Gogna, M., Al-Amoody, F., Karmakar, S., Ayers, J., Heller, E., Jain, F.: Nonvolatile memories using quantum dot (QD) floating gate assembled on II–VI tunnel insulator. J. Electron. Mater. 39(7), 903–907 (2010)CrossRefGoogle Scholar
  23. 23.
    Karmakar, S., Gogna, M., Jain, F.C.: Improved device structure of quantum dot gate FET to get more stable intermediate state. Electron. Lett. 48(24), 1556–1557 (2012)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Supriya Karmakar
    • 1
  1. 1.Intel CorporationHillsboroUSA

Personalised recommendations