Quantum Dot Gate Field-Effect Transistor: Device Structures

  • Supriya Karmakar


Chapter 2 introduces quantum dot gate field-effect transistors (QDGFETs). Different types of quantum dots (SiO x -cladded Si and GeO x -cladded Ge) are self-assembled on different kinds of gate insulator like silicon dioxide as well as high-κ dielectric. Different kinds of substrates (silicon and silicon-on-insulator) are also introduced as different material systems.


Gate Insulator Subthreshold Swing Gate Region Gate Dielectric Thickness Gold Arsenic 


  1. 1.
    Sah, Chih-Tang: Evolution of the MOS transistor – from conception to VLSI. Proc. IEEE 76(10), 1280–1326 (1988)Google Scholar
  2. 2.
    Ihantola, H.K.J., Moll, J.L.: Design theory of a surface field-effect transistor. Solid-State Electron. 7(4), 423–430 (1964)CrossRefGoogle Scholar
  3. 3.
    Barron, M.B.: Low level currents in insulated gate field effect transistors. Solid-State Electron. 15(3), 293–302 (1972)CrossRefGoogle Scholar
  4. 4.
    Stuart, R.A., Eccleston, W.: Leakage currents of MOS devices under surface-depletion conditions. Electron. Lett. 8(9), 225–227 (1972)CrossRefGoogle Scholar
  5. 5.
    Swanson, R.M., Meindl, J.D.: Ion-implanted complementary MOS transistors in low-voltage circuits. IEEE J. Solid-State Circuits 7(2), 146–153 (1972)CrossRefGoogle Scholar
  6. 6.
    Van Overstraeten, R.J., Declerck, G., Broux, G.L.: Inadequacy of the classical theory of the MOS transistor operating in weak inversion. IEEE Trans. Electron Devices 20(12), 1150–1153 (1973)CrossRefGoogle Scholar
  7. 7.
    Natarajan, S., et al.: A 32nm logic technology featuring 2nd-generation high-k + metal-gate transistors, enhanced channel strain and 0.171μm2 SRAM cell size in a 291Mb array. In: IEDM Technical Digest, pp. 941–943, Dec 2008Google Scholar
  8. 8.
    Thompson, S., et al.: A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 μm2 SRAM cell. In: IEDM Technical Digest, pp. 61–64, Dec 2002Google Scholar
  9. 9.
    Bai, P., et al.: A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 μm2 SRAM cell. In: IEDM Technical Digest, pp. 657–660, Dec 2004Google Scholar
  10. 10.
    Auth, C., et al.: 45nm high-k + metal gate strain-enhanced transistors. In: 2008 Symposium on VLSI Technology, pp. 128–129, June 2008Google Scholar
  11. 11.
    Balestra, F., et al.: Double-gate silicon-on-insulator transistor with volume inversion: a new device with greatly enhanced performance. IEEE Electron Device Lett. 8(9), 410–412 (1987)CrossRefGoogle Scholar
  12. 12.
    Hisamoto, D., et al.: Impact of the vertical SOI ‘DELTA’ structure on planar device technology. IEEE Trans. Electron Devices 38(6), 1419–1424 (1991)CrossRefGoogle Scholar
  13. 13.
    Lim, H.K., Fossum, J.G.: Threshold voltage of thin-film Silicon-on-insulator (SOI) MOSFET’s. IEEE Trans. Electron Devices 30(10), 1244–1251 (1983)CrossRefGoogle Scholar
  14. 14.
    Yeo, Y.-C., Ranade, P., Lu, Q., Lin, R., King, T.-J., Hu, C.: Effects of high-_dielectrics on the workfunctions of metal and silicon gates. In: VLSI Technology Digest, pp. 49–50, June 2001Google Scholar
  15. 15.
    Yeo, Y.-C., Lu, Q., Ranade, P., Takeuchi, H., Yang, K.J., Polishchuk, I., King, T.-J., Hu, C., Song, S.C., Luan, H.F., Kwong, D.-L.: Dual-metal gate CMOS technology with ultra-thin silicon nitride gate dielectric. IEEE Electron Device Lett. 22, 227–229 (2001)CrossRefGoogle Scholar
  16. 16.
    Lee, S.J., Luan, H.F., Bai, W.P., Lee, C.H., Jeon, T.S., Senzaki, Y., Roberts, D., Kwong, D.-L.: High quality ultra thin CVD HfO gate stack with poly-Si gate electrode. In: IEDM Technical Digest, pp. 31–34, Dec 2000Google Scholar
  17. 17.
    Lu, Q., Lin, R., Ranade, P., Yeo, Y.C., Meng, X., Takeuchi, H., King, T.-J., Hu, C., Luan, H., Lee, S., Bai, W., Lee, C.-H., Kwong, D.-L., Guo, X., Wang, X., Ma, T.-P.: Molybdenum metal gate MOS technology for post-SiO gate dielectrics. In: IEDM Technical Digest, pp. 641–644, Dec 2000Google Scholar
  18. 18.
    Mönch, W.: Electronic properties of ideal and interface-modified metal–semiconductor interfaces. J. Vac. Sci. Technol. B 14, 2985–2993 (1996)CrossRefGoogle Scholar
  19. 19.
    Kavalieros, J., et al.: Tri-gate transistor architecture with high-k gate dielectrics, metal gates and strain engineering. In: 2006 Symposium on VLSI Technology, pp. 50–51, June 2006Google Scholar
  20. 20.
    Velliantis, G., et al.: Gatestacks for scalable high-performance FinFETs. In: 2007 Symposium on VLSI Technology, pp. 681–684, June 2007Google Scholar
  21. 21.
    Kang, Y.C., et al.: Effects of film stress modulation using TiN metal gate on stress engineering and its impact on device characteristics in metal gate/high-dielectric SOI FinFETs. IEEE Electron Device Lett. 29(5), 487–490 (2008)CrossRefGoogle Scholar
  22. 22.
    Colinge, J.P., et al.: Silicon-on-insulator ‘gate-all-around device’. In: IEDM Technical Digest, pp. 595–598, Dec 1990Google Scholar
  23. 23.
    Monfray, S., et al.: 50 nm-gate all around (GAA)-silicon on nothing (SON)-devices: a simple way to co-integration of GAA transistors within bulk MOSFET process. In: 2002 Symposium on VLSI Technology, pp. 108–109, June 2002Google Scholar
  24. 24.
    Larrieu, G. et al.: Low temperature implementation of dopant-segregated band edge metallic S/D junctions in thin-body SOI p-MOSFETs. In: IEDM Technical Digest, pp. 147–150, Dec 2007Google Scholar
  25. 25.
    Hisamoto, D., et al.: A fully depleted lean-channel transistor (DELTA)-a novel vertical ultrathin SOI MOSFET. IEEE Electron Device Lett. 11(1), 36–38 (1990)CrossRefGoogle Scholar
  26. 26.
    Martini, I., Kamp, M., Fischer, F., Worschech, L., Koeth, J., Forchel, A.: Fabrication of quantum point contacts and quantum dots by imprint lithography. Microelectron. Eng. 57–58, 397–403 (2001)CrossRefGoogle Scholar
  27. 27.
    Verma, V.B., Reddy, U., Dias, N.L., Bassett, K.P., Li, X., Coleman, J.J.: Patterned quantum dot molecule laser fabricated by electron beam lithography and wet chemical etching. IEEE J. Quantum Electron. 46(12), 1827–1833 (2010)CrossRefGoogle Scholar
  28. 28.
    Jung, S.I., Yun, I., Han, I.K., Cho, S.M., Lee, J.I.: Fabrication and optical properties of CdSe/ZnS core/shell quantum-dot multilayer film and hybrid organic/inorganic light-emitting diodes fabricated by using layer-by-layer assembly. J. Korean Phys. Soc. 52(6), 1891–1894 (2008)CrossRefGoogle Scholar
  29. 29.
    Tan, Z., Xu, J., hang, C., Zhu, T., Zhang, F., Hedrick, B., Pickering, S., Wu, J., Su, H., Gao, S., Wang, A.Y., Kimball, B., Ruzyllo, J., Dellas, N.S., Mohney, S.E.: Colloidal nanocrystal-based light-emitting diodes fabricated on plastic toward flexible quantum dot optoelectronics. J. Appl. Phys. 105(3), 034312-1-5 (2009)Google Scholar
  30. 30.
    Fukui, T., Saito, H., Kasu, M., Ando, S.: MOCVD methods for fabricating GaAs quantum wires and quantum dots. J. Cryst. Growth 124(1–4), 493–496 (1992)CrossRefGoogle Scholar
  31. 31.
    Elarde, V.C., Yeoh, T.S., Rangarajan, R., Coleman, J.J.: Controlled fabrication of InGaAs quantum dots by selective area epitaxy MOCVD growth. J. Cryst. Growth 272(1–4), 148–153 (2004)CrossRefGoogle Scholar
  32. 32.
    Matsumura, N., Tai, E., Kimura, Y., Saito, T., Ohira, M., Saraie, J.: Self-assembling CdSe, ZnCdSe and CdTe quantum dots on ZnSe(100) epilayers. Jpn. J. Appl. Phys. 39, 1104–1105 (2000)CrossRefGoogle Scholar
  33. 33.
    Bimberg, D., Grundmann, M., Ledentsov, N.N., Ruvimov, S.S., Werner, P., Richter, U., Heydenreich, J., Ustinov, V.M., Kop’ev, P.S., Alferov, Z.H.I.: Self-organization processes in MBE-grown quantum dot structures. Thin Solid Films 267(1–2), 32–36 (1995)CrossRefGoogle Scholar
  34. 34.
    Tiwari, S., Rana, F., Chan, K., Hanafi, H., Chan, W., Buchanan, D.: Volatile and non-volatile memories in silicon with nano-crystal storage. In: IEDM, pp. 521–525, Dec 1995Google Scholar
  35. 35.
    Jain, F.C., Heller, E., Karmakar, S., Chandy, J.: Device and circuit modeling using novel 3-state quantum dot gate FETs. In: International Semiconductor Device Research Symposium, 12–15 Dec 2007, College ParkGoogle Scholar
  36. 36.
    Gogna, M., Karmakar, S., Al-Amoody, F., Papadimitrakopoulous, F., Jain, F.: Self Assembled Germanium Oxide cladded Germanium quantum dot gate nonvolatile memory. In: Nanoelectronic Devices for Defense and Security, 28 Sep–02 Oct 2009, Fort LauderdaleGoogle Scholar
  37. 37.
    Phely-Bobin, T., Chattopadhyay, D., Papadimitrakopoulos, F.: Characterization of mechanically attrited Si/SiOx nanoparticles and their self-assembled composite films. Chem. Mater. 14, 1030–1036 (2002)CrossRefGoogle Scholar
  38. 38.
    Jain, F., Papadimitrakopoulos, F.: Site-specific nanoparticle self-assembly. US Patent 7,368,370, 2008Google Scholar
  39. 39.
    Karmakar, S., Suarez, E., Jain, F.: Quantum dot gate three state FETs using ZnS – ZnMgS lattice-matched gate insulator on silicon. J. Electron. Mater. 40(8), 1749–1756 (2011)CrossRefGoogle Scholar
  40. 40.
    Karmakar, S., Gogna, M., Jain, F.C.: Improved device structure of quantum dot gate FET to get more stable intermediate state. Electron. Lett. 48(24), 1556–1557 (2012)Google Scholar

Copyright information

© Springer India 2014

Authors and Affiliations

  • Supriya Karmakar
    • 1
  1. 1.Intel CorporationHillsboroUSA

Personalised recommendations