Skip to main content

Quantum Dot Gate Field-Effect Transistor: Device Structures

  • Chapter
  • First Online:
Novel Three-state Quantum Dot Gate Field Effect Transistor

Abstract

Chapter 2 introduces quantum dot gate field-effect transistors (QDGFETs). Different types of quantum dots (SiO x -cladded Si and GeO x -cladded Ge) are self-assembled on different kinds of gate insulator like silicon dioxide as well as high-κ dielectric. Different kinds of substrates (silicon and silicon-on-insulator) are also introduced as different material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sah, Chih-Tang: Evolution of the MOS transistor – from conception to VLSI. Proc. IEEE 76(10), 1280–1326 (1988)

    Google Scholar 

  2. Ihantola, H.K.J., Moll, J.L.: Design theory of a surface field-effect transistor. Solid-State Electron. 7(4), 423–430 (1964)

    Article  Google Scholar 

  3. Barron, M.B.: Low level currents in insulated gate field effect transistors. Solid-State Electron. 15(3), 293–302 (1972)

    Article  Google Scholar 

  4. Stuart, R.A., Eccleston, W.: Leakage currents of MOS devices under surface-depletion conditions. Electron. Lett. 8(9), 225–227 (1972)

    Article  Google Scholar 

  5. Swanson, R.M., Meindl, J.D.: Ion-implanted complementary MOS transistors in low-voltage circuits. IEEE J. Solid-State Circuits 7(2), 146–153 (1972)

    Article  Google Scholar 

  6. Van Overstraeten, R.J., Declerck, G., Broux, G.L.: Inadequacy of the classical theory of the MOS transistor operating in weak inversion. IEEE Trans. Electron Devices 20(12), 1150–1153 (1973)

    Article  Google Scholar 

  7. Natarajan, S., et al.: A 32nm logic technology featuring 2nd-generation high-k + metal-gate transistors, enhanced channel strain and 0.171μm2 SRAM cell size in a 291Mb array. In: IEDM Technical Digest, pp. 941–943, Dec 2008

    Google Scholar 

  8. Thompson, S., et al.: A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 μm2 SRAM cell. In: IEDM Technical Digest, pp. 61–64, Dec 2002

    Google Scholar 

  9. Bai, P., et al.: A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 μm2 SRAM cell. In: IEDM Technical Digest, pp. 657–660, Dec 2004

    Google Scholar 

  10. Auth, C., et al.: 45nm high-k + metal gate strain-enhanced transistors. In: 2008 Symposium on VLSI Technology, pp. 128–129, June 2008

    Google Scholar 

  11. Balestra, F., et al.: Double-gate silicon-on-insulator transistor with volume inversion: a new device with greatly enhanced performance. IEEE Electron Device Lett. 8(9), 410–412 (1987)

    Article  Google Scholar 

  12. Hisamoto, D., et al.: Impact of the vertical SOI ‘DELTA’ structure on planar device technology. IEEE Trans. Electron Devices 38(6), 1419–1424 (1991)

    Article  Google Scholar 

  13. Lim, H.K., Fossum, J.G.: Threshold voltage of thin-film Silicon-on-insulator (SOI) MOSFET’s. IEEE Trans. Electron Devices 30(10), 1244–1251 (1983)

    Article  Google Scholar 

  14. Yeo, Y.-C., Ranade, P., Lu, Q., Lin, R., King, T.-J., Hu, C.: Effects of high-_dielectrics on the workfunctions of metal and silicon gates. In: VLSI Technology Digest, pp. 49–50, June 2001

    Google Scholar 

  15. Yeo, Y.-C., Lu, Q., Ranade, P., Takeuchi, H., Yang, K.J., Polishchuk, I., King, T.-J., Hu, C., Song, S.C., Luan, H.F., Kwong, D.-L.: Dual-metal gate CMOS technology with ultra-thin silicon nitride gate dielectric. IEEE Electron Device Lett. 22, 227–229 (2001)

    Article  Google Scholar 

  16. Lee, S.J., Luan, H.F., Bai, W.P., Lee, C.H., Jeon, T.S., Senzaki, Y., Roberts, D., Kwong, D.-L.: High quality ultra thin CVD HfO gate stack with poly-Si gate electrode. In: IEDM Technical Digest, pp. 31–34, Dec 2000

    Google Scholar 

  17. Lu, Q., Lin, R., Ranade, P., Yeo, Y.C., Meng, X., Takeuchi, H., King, T.-J., Hu, C., Luan, H., Lee, S., Bai, W., Lee, C.-H., Kwong, D.-L., Guo, X., Wang, X., Ma, T.-P.: Molybdenum metal gate MOS technology for post-SiO gate dielectrics. In: IEDM Technical Digest, pp. 641–644, Dec 2000

    Google Scholar 

  18. Mönch, W.: Electronic properties of ideal and interface-modified metal–semiconductor interfaces. J. Vac. Sci. Technol. B 14, 2985–2993 (1996)

    Article  Google Scholar 

  19. Kavalieros, J., et al.: Tri-gate transistor architecture with high-k gate dielectrics, metal gates and strain engineering. In: 2006 Symposium on VLSI Technology, pp. 50–51, June 2006

    Google Scholar 

  20. Velliantis, G., et al.: Gatestacks for scalable high-performance FinFETs. In: 2007 Symposium on VLSI Technology, pp. 681–684, June 2007

    Google Scholar 

  21. Kang, Y.C., et al.: Effects of film stress modulation using TiN metal gate on stress engineering and its impact on device characteristics in metal gate/high-dielectric SOI FinFETs. IEEE Electron Device Lett. 29(5), 487–490 (2008)

    Article  Google Scholar 

  22. Colinge, J.P., et al.: Silicon-on-insulator ‘gate-all-around device’. In: IEDM Technical Digest, pp. 595–598, Dec 1990

    Google Scholar 

  23. Monfray, S., et al.: 50 nm-gate all around (GAA)-silicon on nothing (SON)-devices: a simple way to co-integration of GAA transistors within bulk MOSFET process. In: 2002 Symposium on VLSI Technology, pp. 108–109, June 2002

    Google Scholar 

  24. Larrieu, G. et al.: Low temperature implementation of dopant-segregated band edge metallic S/D junctions in thin-body SOI p-MOSFETs. In: IEDM Technical Digest, pp. 147–150, Dec 2007

    Google Scholar 

  25. Hisamoto, D., et al.: A fully depleted lean-channel transistor (DELTA)-a novel vertical ultrathin SOI MOSFET. IEEE Electron Device Lett. 11(1), 36–38 (1990)

    Article  Google Scholar 

  26. Martini, I., Kamp, M., Fischer, F., Worschech, L., Koeth, J., Forchel, A.: Fabrication of quantum point contacts and quantum dots by imprint lithography. Microelectron. Eng. 57–58, 397–403 (2001)

    Article  Google Scholar 

  27. Verma, V.B., Reddy, U., Dias, N.L., Bassett, K.P., Li, X., Coleman, J.J.: Patterned quantum dot molecule laser fabricated by electron beam lithography and wet chemical etching. IEEE J. Quantum Electron. 46(12), 1827–1833 (2010)

    Article  Google Scholar 

  28. Jung, S.I., Yun, I., Han, I.K., Cho, S.M., Lee, J.I.: Fabrication and optical properties of CdSe/ZnS core/shell quantum-dot multilayer film and hybrid organic/inorganic light-emitting diodes fabricated by using layer-by-layer assembly. J. Korean Phys. Soc. 52(6), 1891–1894 (2008)

    Article  Google Scholar 

  29. Tan, Z., Xu, J., hang, C., Zhu, T., Zhang, F., Hedrick, B., Pickering, S., Wu, J., Su, H., Gao, S., Wang, A.Y., Kimball, B., Ruzyllo, J., Dellas, N.S., Mohney, S.E.: Colloidal nanocrystal-based light-emitting diodes fabricated on plastic toward flexible quantum dot optoelectronics. J. Appl. Phys. 105(3), 034312-1-5 (2009)

    Google Scholar 

  30. Fukui, T., Saito, H., Kasu, M., Ando, S.: MOCVD methods for fabricating GaAs quantum wires and quantum dots. J. Cryst. Growth 124(1–4), 493–496 (1992)

    Article  Google Scholar 

  31. Elarde, V.C., Yeoh, T.S., Rangarajan, R., Coleman, J.J.: Controlled fabrication of InGaAs quantum dots by selective area epitaxy MOCVD growth. J. Cryst. Growth 272(1–4), 148–153 (2004)

    Article  Google Scholar 

  32. Matsumura, N., Tai, E., Kimura, Y., Saito, T., Ohira, M., Saraie, J.: Self-assembling CdSe, ZnCdSe and CdTe quantum dots on ZnSe(100) epilayers. Jpn. J. Appl. Phys. 39, 1104–1105 (2000)

    Article  Google Scholar 

  33. Bimberg, D., Grundmann, M., Ledentsov, N.N., Ruvimov, S.S., Werner, P., Richter, U., Heydenreich, J., Ustinov, V.M., Kop’ev, P.S., Alferov, Z.H.I.: Self-organization processes in MBE-grown quantum dot structures. Thin Solid Films 267(1–2), 32–36 (1995)

    Article  Google Scholar 

  34. Tiwari, S., Rana, F., Chan, K., Hanafi, H., Chan, W., Buchanan, D.: Volatile and non-volatile memories in silicon with nano-crystal storage. In: IEDM, pp. 521–525, Dec 1995

    Google Scholar 

  35. Jain, F.C., Heller, E., Karmakar, S., Chandy, J.: Device and circuit modeling using novel 3-state quantum dot gate FETs. In: International Semiconductor Device Research Symposium, 12–15 Dec 2007, College Park

    Google Scholar 

  36. Gogna, M., Karmakar, S., Al-Amoody, F., Papadimitrakopoulous, F., Jain, F.: Self Assembled Germanium Oxide cladded Germanium quantum dot gate nonvolatile memory. In: Nanoelectronic Devices for Defense and Security, 28 Sep–02 Oct 2009, Fort Lauderdale

    Google Scholar 

  37. Phely-Bobin, T., Chattopadhyay, D., Papadimitrakopoulos, F.: Characterization of mechanically attrited Si/SiOx nanoparticles and their self-assembled composite films. Chem. Mater. 14, 1030–1036 (2002)

    Article  Google Scholar 

  38. Jain, F., Papadimitrakopoulos, F.: Site-specific nanoparticle self-assembly. US Patent 7,368,370, 2008

    Google Scholar 

  39. Karmakar, S., Suarez, E., Jain, F.: Quantum dot gate three state FETs using ZnS – ZnMgS lattice-matched gate insulator on silicon. J. Electron. Mater. 40(8), 1749–1756 (2011)

    Article  Google Scholar 

  40. Karmakar, S., Gogna, M., Jain, F.C.: Improved device structure of quantum dot gate FET to get more stable intermediate state. Electron. Lett. 48(24), 1556–1557 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Karmakar, S. (2014). Quantum Dot Gate Field-Effect Transistor: Device Structures. In: Novel Three-state Quantum Dot Gate Field Effect Transistor. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1635-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1635-3_2

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1634-6

  • Online ISBN: 978-81-322-1635-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics