Skip to main content

Introduction: Multistate Devices and Logic

  • Chapter
  • First Online:
Novel Three-state Quantum Dot Gate Field Effect Transistor
  • 922 Accesses

Abstract

Chapter 1 discusses the multivalued logic and different negative tunneling devices to implement this multivalued logic. Different problems of different negative-resistance device and possible solution using quantum dot gate FET (QDGFET). There are advantages over the existing conventional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8), (1965)

    Google Scholar 

  2. Moore, G.E.: No exponential is forever: but ‘forever’ can be delayed! In: Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC. 2003 I.E. International, University of Pennsylvania, vol. 1, pp. 20–23 (2003)

    Google Scholar 

  3. Nowak, E.J.: Maintaining the benefits of CMOS scaling when scaling bogs down, pp. 169–180. J. Res. Dev., 46 (2002)

    Google Scholar 

  4. Theis, T.N.: Beyond the silicon transistor: personal observations. Comput. Sci. Eng. 5, 25–29 (2003)

    Article  Google Scholar 

  5. Borkar, S.: Design perspectives on 22 nm CMOS and beyond. In: Design Automation Conference, San Francisco, USA, pp. 93–94, 26–31 July 2009

    Google Scholar 

  6. Goto, M., Kawanaka, S., Inumiya, S., Kusunoki, N., Saitoh, M., Tatsumura, K., Kinoshita, A., Inaba, S., Toyoshima, Y.: The study of mobility-tin, trade-off in deeply scaled high-k/metal gate devices and scaling design guideline for 22 nm-node generation. In: VLSI Technology, 2009 Symposium on, Honolulu, HI, pp. 214–215, 16–18 June 2009

    Google Scholar 

  7. Ru Huang, Han Ming Wu, Jin Feng Kang, De Yuan Xiao, Xue Long Shi, Xia an, Yu Tian, Run Sheng Wang, Liang Liang Zhang, Xing Zhang, et al.: Challenges of 22 nm and beyond CMOS technology. Sci. China Ser. F Inf. Sci. 52(9), 1491–1533

    Google Scholar 

  8. Thompson, S., et al.: A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 μm2 SRAM cell. In: IEDM Technical Digest, pp. 61–64, Dec 2002

    Google Scholar 

  9. Mistry, K., et al.: A 45nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. In: IEDM Technical Digest, pp. 247–250, Dec 2007

    Google Scholar 

  10. Bai, P., et al.: A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 μm2 SRAM cell. In: IEDM Technical Digest, pp. 657–660, Dec 2004

    Google Scholar 

  11. Lim, H.K., Fossum, J.G.: Threshold voltage of thin-film Silicon-on-insulator (SOI) MOSFET’s. IEEE Trans. Electron Devices 30(10), 1244–1251 (1983)

    Article  Google Scholar 

  12. Colinge, J.P.: Transconductance of silicon-on-insulator MOSFETs. IEEE Electron Device Lett. EDL-6, 573–574 (1985)

    Article  Google Scholar 

  13. Micheel, L.J., Taddiken, A.H., Seabaugh, A.C.: Multiple-valued logic computation circuits using micro- and nanoelectronics devices. In: Proceedings of 23rd IEEE International Symposium on Multiple- Valued Logic, Sacramento, California, USA, pp. 164–169 (1993)

    Google Scholar 

  14. Seabaugh, A.C., Frensley, W.R., Randall, J.N., Reed, M.A., Farrington, D.L., Matyi, R.J.: Pseudomorphic bipolar quantum resonant-tunneling transistor. IEEE Trans. Electron Devices, 36(10), 2228–2234 (1989)

    Google Scholar 

  15. Stock, J., Malindretos, J., Indlekofer, K.M., Pottgens, M., Forster, A., Luth, H.: A vertical resonant tunneling transistor for application in digital logic circuits. IEEE Trans. Electron Devices, 48(6), 1028–1032 (2001)

    Google Scholar 

  16. Capasso, F., Kiehl, R.A.: Resonant tunneling transistor with quantum well base and high – energy injection: a new negative differential resistance device. J. Appl. Phys. 58(3), 1366–1368 (1985)

    Google Scholar 

  17. Lin, H.C.: Resonant tunneling diodes for multi-valued digital applications. In: Proceedings of 24th IEEE International Symposium on Multiple –Valued Logic, Boston, Massachusetts, USA, pp. 188–195 (1994)

    Google Scholar 

  18. Forster, A.: Resonant tunneling diodes: the effect of structural properties on their performance. Adv. Solid State Phys. 33, 37–62 (1993)

    Article  Google Scholar 

  19. Waho, T., Chen, K.J., Yamamoto, M.: Resonant-tunneling diode and HEMT logic circuits with multiple thresholds and multi-level output. IEEE J. Solid-State Circuits 33(2), 268–274 (1998)

    Article  Google Scholar 

  20. Mazumder, P., Kulkarni, S., Bhattacharya, M., Sun, J.P., Haddad, G.I.: Digital circuit applications of resonant tunneling diodes. Proc. IEEE 86(4), 664–686 (1998)

    Article  Google Scholar 

  21. van der Wagt, J.P.A., Tang, H., Broekaert, T.P.E., Seabaugh, A.C., Kao, Y.-C.: Multibit resonant tunneling diode SRAM cell based on slew-rate addressing. IEEE Trans. Electron Devices 46(1), 55–62 (1999)

    Article  Google Scholar 

  22. Waho, T.: Resonant tunneling transistor and its application to multiple-valued logic circuits. In: Proceedings of 25th IEEE International Symposium on Multiple-Valued Logic, Bloomington, Indiana, USA, pp. 130–138 (1995)

    Google Scholar 

  23. Chen, W.L., Mums, G.0., Davis, L., Bhattacharya, P.K., Haddad, G.I.: The growth of resonant tunneling hot electron transistors using chemical beam epitaxy. In: The 4th International Conference in Chemical Beam Epitaxy, section S-7, Nara, Japan, July 1993

    Google Scholar 

  24. Futatsugi, T., Yamaguchi, Y., Ishii, K., Imamura, K., Muto, S., Yokoyama, N., Shibatomi, A.: A resonant tunneling bipolar transistor (RBT): a proposal and demonstration for new functional device with high current gains. In: Technical Digest IEDM, p. 286, Dec 1986

    Google Scholar 

  25. Seabaugh, A.C., Frensley, W. R., Kao, Y.C., Randall, J.N., Reed, M.A.: Quantum-well resonant tunneling transistors. In: The Proceedings of the 1989 I.E. Come11 Conference, Ithaca, p. 255

    Google Scholar 

  26. Jain, F.C., Heller, E., Karmakar, S., Chandy, J.: Device and circuit modeling using novel 3-state quantum dot gate FETs. In: International Semiconductor Device Research Symposium, College Park, 12–15 Dec 2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Karmakar, S. (2014). Introduction: Multistate Devices and Logic. In: Novel Three-state Quantum Dot Gate Field Effect Transistor. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1635-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-1635-3_1

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-1634-6

  • Online ISBN: 978-81-322-1635-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics