Skip to main content

Molecular Interventions for Enhancing the Protein Quality of Maize

  • Chapter
  • First Online:
Maize: Nutrition Dynamics and Novel Uses

Abstract

Maize, one of the three most popular cereal crops of the world, globally contributes 15 % of the protein and 20 % of the calories derived from food crops in the world’s diet. However, cereals do not provide a nutritionally balanced source of protein. For nutritional security, it is necessary to adopt a genetic enhancement strategy in which essential amino acids are either incorporated or increased in grain protein to alleviate hunger, increase income, and improve livelihood. Quality protein maize (QPM) is having high nutritive value of endosperm protein with opaque2 (o2) mutation leading to 60–100 % increased content of lysine and tryptophan. The lysine value of o2 maize is 2.5–4.0 g/100 g of endosperm protein, which is more than twice that of the normal maize (1.3 g lysine/100 g protein). International Maize and Wheat Improvement Center (CIMMYT), Mexico, played a significant role in the development of QPM maize. The breeding of QPM involves three genetic systems: (i) the recessive mutant allele of the o2 gene, (ii) the endosperm hardness modifier genes, and (iii) the amino acid modifier genes influencing free amino acid content in the endosperm. Due to recessive nature of the o2 gene, complex action of modifier genes, and presence of amino acid enhancer genes, the use of DNA marker-assisted selection (MAS) accelerated the selection efficiency and expedited the development of new QPM cultivars. Using a combination of MAS and phenotypic selection techniques, a single cross, short duration Vivek QPM 9 hybrid was developed and released in 2008 by Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, India. Alternatively, manipulating the plant lysine metabolic pathway provides possible enzyme targets for genetic engineering to increase free lysine content in corn grain. Furthermore, RNA interference (RNAi) has been used to specifically suppress α-zein production in transgenic corn, resulting in a doubling of the lysine content of corn grain. QPM is likely to gain wider acceptance if QTLs for kernel modification, and enhancers for amino acids are fine mapped to develop markers to follow MAS for vitreous kernels and high levels of lysine. However, the major constraints in adoption of QPM hybrids are contamination with normal maize pollen in field, resulting in erosion of the trait in farmer-saved seed system. It is essential to give training on good seed production practices to the local communities and development of linkage between the seed producers, farmers, and the industry for sustainable higher nutritional benefits of QPM in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal PK, Gupta HS (2010) Enhancement of protein quality of maize using biotechnological options. Anim Nutr Feed Tech 10S:79–91

    Google Scholar 

  • Azevedo RA, Lancien M, Lea PJ (2006) The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 30:143–162

    Article  PubMed  CAS  Google Scholar 

  • Babu R, Nair SK, Kumar A, Venkatesh S, Sekhar JC, Singh NN, Srinivasan G, Gupta HS (2005) Two-generation marker-aided backcrossing for rapid conversion of normal maize lines to quality protein maize. Theor Appl Genet 111:888–897

    Article  PubMed  CAS  Google Scholar 

  • Bass HW, Webster C, O’Brien GR, Roberts JKM, Bostou RS (1992) A maize ribosome inactivating protein is controlled by the transcriptional activator opaque 2. Plant cell 4:225–234

    PubMed  CAS  Google Scholar 

  • Bhatia CR, Rabson R (1987) Relationship of grain yield and nutritional quality. In: Olson RA, Frey KJ (eds) Nutritional quality of cereal grains: genetic and agronomic improvement, vol 28, Agronomy monograph. ASA, CSSA and SSSA, Madison, pp 11–43

    Google Scholar 

  • Bressani R (1992) Nutritional value of high-lysine maize in humans. In: Mertz ET (ed) Quality protein maize. American Association of Cereal Chemists, St. Paul

    Google Scholar 

  • Bressani R (1995) Proceedings of the international symposium on quality protein maize EMBRAPA/CNPMS, Sete Lagaos, Brazil, pp 41–63

    Google Scholar 

  • Brochetto-Braga MR, Leite A, Arruda P (1992) Partial purification and characterization of lysine-ketoglutarate reductase in normal and opaque-2 maize endosperms. Plant Physiol 98:1139–1147

    Article  PubMed  CAS  Google Scholar 

  • Carneiro NP, Hughes PA, Larkins BA (1999) The eEF1A gene family is differentially expressed in maize endosperm. Plant Mol Biol 41:801–813

    Article  PubMed  CAS  Google Scholar 

  • Damerval C, Devienee D (1993) Quantification of dominance for proteins, pleiotropically affected by opaque-2 in maize. Heredity 70:38–51

    Article  Google Scholar 

  • Danson JW, Mercy M, Michael K, Martin L, Alex K, Alpha D (2006) Marker assisted introgression of opaque2 gene into herbicide resistant elite maize inbred lines. Afr J Biotech 5:2417–2422

    CAS  Google Scholar 

  • De Bosque C, Castellanos EJ, Bressani R (1988) Reporte annual. INCAP, Guatemala

    Google Scholar 

  • Dhillon BS, Prasanna BM (2001) In: Chopra VL (ed) Breeding field crops, Oxford & IBH, New Delhi, pp 149–185

    Google Scholar 

  • Frisch M, Bohn M, Melchinger RAE (1999a) Comparison of selection strategies for marker assisted back crossing of a gene. Crop Sci 39:1295–1301

    Article  Google Scholar 

  • Frisch M, Bohn M, Melchinger RAE (1999b) Minimum sample size and optimum positioning of flanking markers in assisted back crossing for transfer of target gene. Crop Sci 39:967–975

    Article  Google Scholar 

  • Frizzi A, Huang S, Gilbertson LA, Armstrong TA, Luethy MH, Malvar TM (2008) Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette. Plant Biotech J 6:13–21

    CAS  Google Scholar 

  • Gaziola SA, Alessi ES, Guimaraes PEO, Damerval C, Azevedo RA (1999) Quality protein maize: a biochemical study of enzymes involved in metabolism. J Agri Food Chem 47:1268–1275

    Article  CAS  Google Scholar 

  • Gevers HO, Lake JK (1992) Development of modified opaque-2 maize in South Africa. In: Mertz ET (ed) Quality protein maize. American Association of Cereal Chemists, St. Paul, pp 111–121

    Google Scholar 

  • Gibbon BC, Larkins BA (2005) Molecular genetics approaches to developing quality protein maize. Trends Genet 21:227–233

    Article  PubMed  CAS  Google Scholar 

  • Graham GG, Placko RP, Maclean WC (1980) Nutritional value of normal, opaque2 and, sugary 2 and opaque 2 maize hybrids for children and infants 2. Plasma free amino acids. J Nutr 110:1070–1074

    PubMed  CAS  Google Scholar 

  • Gupta HS, Aggarwal PK, Mahajan V, Mani VP, Bisht GS, Kumar A, Verma P, Babu R (2009) Quality protein maize for nutritional security : rapid development of short duration hybrids through molecular marker assisted breeding. Curr Sci 96:230–237

    Google Scholar 

  • Gutierrez-Rojas A, Scott MP, Leyva OR, Menz M, Betran J (2008) Phenotypic characterization of quality protein maize endosperm modification and amino acid contents in a segregating recombinant inbred population. Crop Sci 48:1714–1722

    Article  Google Scholar 

  • Habben JE, Kirlies AW, Larkin BA (1993) The origin of lysine containing proteins in opaque-2 maize endosperm. Plant Mol Biol 23:825–838

    Article  PubMed  CAS  Google Scholar 

  • Holding DR, Hunter BG, Chung T, Gibbon BC, Ford CF, Bharti AK, Messing J, Hamaker BR, Larkins BA (2008) Genetic analysis of opaque-2 modifier loci in quality protein maize. Theo App Genet 117:157–170

    Article  CAS  Google Scholar 

  • Hospital F, Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147:1469–1485

    PubMed  CAS  Google Scholar 

  • Houmard NM, Mainville JL, Bonin CP, Huang S, Luethy MH, Malvar TM (2007) High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotech J 5:605–614

    Article  CAS  Google Scholar 

  • Huang SS, Adams WR, Zhou Q, Malloy KP, Voyles DA, Anthony J, Kriz AL, Luethy MH (2004) Improving nutritional quality of maize proteins by expressing sense and antisense zein genes. J Agri Food Chem 52:1958–1964

    Article  CAS  Google Scholar 

  • Huang S, Kruger DE, Frizzi A, D'Ordine RL, Florida CA, Adams WR, Brown WE, Luethy MH (2005) High-lysine corn produced by the combination of enhanced lysine biosynthesis and reduced zein accumulation. Plant Biotech J 3:555–569

    Article  CAS  Google Scholar 

  • Huang S, Frizzi A, Florida CA, Kruger DE, Luethy MH (2006) High lysine and high tryptophan transgenic maize resulting from the reduction of both 19- and 22-kDα-zeins. Plant Mol Biol 61:525–535

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Frizzi A, Malvar T (2008) Genetically engineered high lysine corn. ISB News Report. pp 1–3

    Google Scholar 

  • Ibitoye DO, Akin-Idowu PE (2010) Marker – assisted – selection (MAS): a fast track to increase genetic gain in horticultural crop breeding. Afr J of Biotech 52:8889–8895

    Google Scholar 

  • Jompuk P, Wongyai W, Jamptong C, Apisitvanich S (2006) Detection of quality protein maize (QPM) using simple sequence repeat (SSR) markers and analysis of tryptophan content in endosperm. Nat Sci 40:768–774

    CAS  Google Scholar 

  • Krivanek AF, Groote DE, Gunaratna H, Diallo NS, Friesen D (2007) Breeding and disseminating quality protein maize for Africa. Afr J Biotech 6:312–324

    CAS  Google Scholar 

  • Lambert RJ, Alexander DE, Dudley JW (1969) Relative performance of normal and modified protein (opaque-2) maize hybrid. Crop Sci 9:242–243

    Article  Google Scholar 

  • Lawton JW, Wilson CM (1987) Proteins of the kernel. In: White PJ, Johnson LA (eds) Corn chemistry and technology. American Association of Cereal Chemists, St. Paul, pp 313–354

    Google Scholar 

  • Lohmer S, Maddaloni M, Motto M, Dilonzo N, Hartings A, Salamini F, Thomson RD (1991) The maize regulatory locus opaque-2 encodes a DNA binding protein which activates the transcription of the B-32 gene. Embo J 10:617–624

    PubMed  CAS  Google Scholar 

  • Lopes MA, Takasaki K, Bostwick DE, Helentjaris T, Larkins BA (1995) Identification of opaque-2 modifier loci in quality-protein-maize. Mol Gen Genet 247:603–613

    Article  PubMed  CAS  Google Scholar 

  • Lutz W (2001) The end of world population growth. Nature 412:543–545

    Article  PubMed  CAS  Google Scholar 

  • Manna R, Okello DK, Imanywoha J, Pixley K, Edema R (2005) Enhancing introgression of the opaque-2 trait into elite maize lines using simple sequence repeats. Afr Crop Sci J 13:215–226

    Google Scholar 

  • Mboogoi MN, Danson JW, Kimani M (2006) Using biotechnology to develop high lysine maize. Afr J of Biotech 5:693–696

    Google Scholar 

  • McWhirter KS (1971) A floury endosperm, high lysine locus on chromosome 10. Corn Genet Coop Newslett 45:184

    Google Scholar 

  • Mertz ET, Bates LS, Nelson OE (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145:279–280

    Article  PubMed  CAS  Google Scholar 

  • Micic-Ignjatovic D, Ristic D, Markovic K, Lazic-Jancic V, Denic M (2008) Quality protein maize – QPM. Genetika 40:205–214

    Article  Google Scholar 

  • Millward DJ, Rivers JP (1989) The need for indispensable amino acids: the concepts of the anabolic drive. Diabetes-Metab Rev 5:191–211

    Article  PubMed  CAS  Google Scholar 

  • Nelson OE (1979) More precise linkage data on fl3. Maize Genet Coop Newslett 53:56

    Google Scholar 

  • Nelson OE (1981) The mutations opaque-9 through opaque-13. Corn Genet Coop Newslett 55:68

    Google Scholar 

  • Nelson OE, Mertz ET, Bates LS (1965) Second mutant gene affecting the amino acid pattern of maize endosperm proteins. Science 150:1469–1472

    Article  PubMed  CAS  Google Scholar 

  • Paez AV, Helm JL, Zuber MS (1969) Lysine content of opaque-2 maize kernels having different phenotypes. Crop Sci 9:251–252

    Article  Google Scholar 

  • Prasanna B, Sarkar K (1991) Coordinate genetic regulation of maize endosperm. Maize Genetics Perspectives ICAR, pp 74–86

    Google Scholar 

  • Prasanna BM, Vasal SK, Kassahun B, Singh NN (2001) Quality protein maize. Curr Sci 81:1308–1319

    CAS  Google Scholar 

  • Salamini F, Borghi B, Lorenzon C (1970) Effect of opaque-2 gene on yield in maize. Euphytica 19:531–538

    Article  Google Scholar 

  • Schmidt RJ, Burr FA, Aukerman MJ, Burr B (1990) Maize regulatory gene opaque2 encodes protein with a “leucine zipper” motif that binds to zein DNA. Proc Natl Acad Sci U S A 87:46–50

    Article  PubMed  CAS  Google Scholar 

  • Segal G, Song R, Messing J (2003) A new opaque variant of maize by a single dominant RNA interference-inducing transgene. Genetics 165:387–397

    PubMed  CAS  Google Scholar 

  • Stepansky A, Less H, Angelovici R, Aharon R, Zhu X, Galili G (2006) Lysine catabolism, an effective versatile regulator of lysine level in plants. Amino Acids 30:121–125

    Article  PubMed  CAS  Google Scholar 

  • Vasal SK (2000) The quality protein maize story. Food Nutr Bull 21:445–450

    Google Scholar 

  • Vasal SK, Villegas E, Bjarnason M, Gelow B, Goertz P (1980) Genetic modifiers and breeding strategies in developing hard endosperm opaque material. In: Pollmer WG, Phillips RH (eds) Improvement of quality traits of maize for grain and silage used. Mortinus Nijhoff Press, London, pp 37–73

    Google Scholar 

  • Visscher PM, Haley CS, Thompson R (1996) Marker assisted introgression in backcross breeding programs. Genetics 144:1923–1932

    PubMed  CAS  Google Scholar 

  • Wang XL, Woo YN, Kim CS, Larkins BA (2001) Quantitative trait locus mapping of loci influencing elongation factor 1 alpha content in maize endosperm. Plant Physiol 125:1271–1282

    Article  PubMed  CAS  Google Scholar 

  • Wilson CM, Shewry PR, Miflin BJ (1981) Maize endosperm proteins compared by sodium dodecyl gel electrophoresis and isoelectric focussing. Cereal Chem 58:275–281

    CAS  Google Scholar 

  • Wu RL, Lou XY, Ma CX, Wang XL, Larkins BA, Casella G (2002) An improved genetic model generates high-resolution mapping of QTL for protein quality in maize endosperm. Proc Natl Acad Sci U S A 99:11281–11286

    Article  PubMed  CAS  Google Scholar 

  • Wu YR, Holding DR, Messing J (2010) γ-zein are essential for endosperm modification in quality protein maize. Proc Natl Acad Sci USA 29:12810–12815

    Article  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker assisted selection in plant breeding: from publication to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Yang W, Zheng Y, Zheng W, Feng R (2005) Molecular genetic mapping of high lysine mutant gene (Opaque-16) and the double recessive effect with opaque-2 in maize. Mol Breed 15:257–269

    Article  Google Scholar 

  • Zhang WL, Yang WP, Chen ZW, Wang MC, Yang LQ, Cai YL (2010) Molecular marker assisted selection for o2 introgression lines with o16 gene in corn. Acta Agronomica Sinica 36:1302–1309

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Vikal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Vikal, Y., Chawla, J.S. (2014). Molecular Interventions for Enhancing the Protein Quality of Maize. In: Chaudhary, D., Kumar, S., Langyan, S. (eds) Maize: Nutrition Dynamics and Novel Uses. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1623-0_4

Download citation

Publish with us

Policies and ethics